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SEMICONDUCTOR AND OPTOELECTRONIC
DEVICES

CROSS-REFERENCE OF RELATED
APPLICATION

This application is a continuation application of co-pend-
ing U.S. patent application Ser. No. 13/422,057, filed on Mar.
16, 2012, which is a continuation of U.S. patent application
Ser.No. 12/904,103, filed on Oct. 13, 2010, now U.S. Pat. No.
8,163,581, the entire contents of the foregoing applications
are incorporated by reference. Furthermore, priority is
claimed to U.S. patent application Ser. No. 12/900,379, filed
on Oct. 7, 2010, now U.S. Pat. No. 8,395,191 and U.S. patent
application Ser. No. 13/273,712, filed on Oct. 14, 2011, now
U.S. Pat. No. 8,273,610, the entire contents of the foregoing
applications are incorporated by reference.

BACKGROUND OF THE INVENTION

(A) Field of the Invention

This invention describes applications of monolithic 3D
integration to various disciplines, including but not limited to,
for example, light-emitting diodes, displays, image-sensors
and solar cells.

(B) Discussion of Background Art

Semiconductor and optoelectronic devices often require

thin monocrystalline (or single-crystal) films deposited on a
certain wafer. To enable this deposition, many techniques,
generally referred to as layer transfer technologies, have been
developed. These include:

Ton-cut, variations of which are referred to as smart-cut,
nano-cleave and smart-cleave: Further information on
ion-cut technology is given in “Frontiers of silicon-on-
insulator,” J. Appl. Phys. 93, 4955-4978 (2003) by G. K.
Celler and S. Cristolovean (“Celler”) and also in
“Mechanically induced Si layer transfer in hydrogen-
implanted Si wafers,” Appl. Phys. Lett., vol. 76, pp.
2370-2372, 2000 by K. Henttinen, I. Suni, and S. S. Lau
(“Hentinnen™).

Porous silicon approaches such as ELTRAN: These are
described in “Eltran, Novel SOI Watfer Technology”,
JSAP International, Number 4, July 2001 by T. Yonehara
and K. Sakaguchi (“Yonehara”).

Lift-off with a temporary substrate, also referred to as
epitaxial lift-off: This is described in “Epitaxial lift-off
and its applications”, 1993 Semicond. Sci. Technol. 8
1124 by P. Demeester, et al (“Demeester”).

Bonding a substrate with single crystal layers followed by
Polishing, Time-controlled etch-back or Etch-stop layer
controlled etch-back to thin the bonded substrate: These
are described in U.S. Pat. No. 6,806,171 by A. Ulyashin
and A. Usenko (“Ulyashin”) and “Enabling SOI-Based
Assembly Technology for Three-Dimensional (3D)
Integrated Circuits (ICs),” IEDM Tech. Digest, p. 363
(2005) by A. W. Topol, D. C. La Tulipe, L. Shi, S. M.
Alam, D. J. Frank, S. E. Steen, J. Vichiconti, D. Posil-
lico, M. Cobb, S. Medd, J. Patel, S. Goma, D. DiMilia,
M. T. Robson, E. Duch, M. Farinelli, C. Wang, R. A.
Conti, D. M. Canaperi, L. Deligianni, A. Kumar, K. T.
Kwietniak, C. D’Emic, J. Ott, A. M. Young, K. W.
Guarini, and M. leong (“Topol”).

Bonding a wafer with a Gallium Nitride film epitaxially
grown on a sapphire substrate followed by laser lift-off
for removing the transparent sapphire substrate: This
method may be suitable for deposition of Gallium
Nitride thin films, and is described in U.S. Pat. No.
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6,071,795 by Nathan W. Cheung, Timothy D. Sands and
William S. Wong (“Cheung”).
Rubber stamp layer transfer: This is described in “Solar
cells sliced and diced”, 19 May 2010, Nature News.
With novel applications of these methods and recognition of
their individual strengths and weaknesses, one can signifi-
cantly enhance today’s light-emitting diode (LED), display,
image-sensor and solar cell technologies.
Background on LEDs

Light emitting diodes (LEDs) are used in many applica-
tions, including automotive lighting, incandescent bulb
replacements, and as backlights for displays. Red LEDs are
typically made on Gallium Arsenide (GaAs) substrates, and
include quantum wells constructed of various materials such
as AllnGaP and GalnP. Blue and green LEDs are typically
made on Sapphire or Silicon Carbide (SiC) or bulk Gallium
Nitride (GaN) substrates, and include quantum wells con-
structed of various materials such as GaN and InGaN.

A white LED for lighting and display applications can be
constructed by either using a blue LED coated with phosphor
(called phosphor-coated LED or pcLED) or by combining
light from red, blue, and green LEDs (called RGB LED).
RGB LEDs are typically constructed by placing red, blue, and
green LEDs side-by-side. While RGB LEDs are more energy-
efficient than pcLLEDs, they are less efficient in mixing red,
blue and green colors to form white light. They also are much
more costly than pcL.EDs. To tackle issues with RGB LEDs,
several proposals have been made.

One RGB LED proposal from Hong Kong University is
described in “Design of vertically stacked polychromatic
light emitting diodes”, Optics Express, June 2009 by K. Hui,
X. Wang, et al (“Hui”). It involves stacking red, blue, and
green LEDs on top of each other after individually packaging
each of these LEDs. While this solves light mixing problems,
this RGB-LED is still much more costly than a pcLED solu-
tion since three LEDs for red, blue, and green color need to be
packaged. A pcLED, on the other hand, requires just one LED
to be packaged and coated with phosphor.

Another RGB LED proposal from Nichia Corporation is
described in “Phosphor Free High-Luminous-Efficiency
White Light-Emitting Diodes Composed of InGaN Multi-
Quantum Well”, Japanese Journal of Applied Physics, 2002
by M. Yamada, Y. Narukawa, et al. (“Yamada”). It involves
constructing and stacking red, blue and green LEDs of GaN-
based materials on a sapphire or SiC substrate. However, red
LEDs are not efficient when constructed with GaN-based
material systems, and that hampers usefulness of this imple-
mentation. It is not possible to deposit defect-free AllnGaP/
InGaP for red LEDs on the same substrate as GaN based blue
and green LEDs, due to a mismatch in thermal expansion
co-efficient between the various material systems.

Yet another RGB-LED proposal is described in “Cascade
Single chip phosphor-free while light emitting diodes”,
Applied Physics Letters, 2008 by X. Guo, G. Shen, et al.
(“Guo”). It involves bonding GaAs based red LEDs with GaN
based blue-green LEDs to produce white light. Unfortu-
nately, this bonding process requires 600° C. temperatures,
causing issues with mismatch of thermal expansion co-effi-
cients and cracking. Another publication on this topic is “A
trichromatic phosphor-free white light-emitting diode by
using adhesive bonding scheme”, Proc. SPIE, Vol. 7635,
2009 by D. Chuai, X. Guo, et al. (“Chuai”). It involves bond-
ing red LEDs with green-blue LED stacks. Bonding is done at
the die level after dicing, which is more costly than a wafer-
based approach.

U.S. patent application Ser. No. 12/130,824 describes vari-
ous stacked RGB LED devices. It also briefly mentions a
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method for construction of a stacked LED where all layers of
the stacked LED are transferred using lift-off with a tempo-
rary carrier and Indium Tin Oxide (ITO) to semiconductor
bonding. This method has several issues for constructing a
RGB LED stack. First, it is difficult to manufacture a lift-off
with a temporary carrier of red LEDs for producing a RGB
LED stack, especially for substrates larger than 2 inch. This is
because red LEDs are typically constructed on non-transpar-
ent GaAs substrates, and lift-off with a temporary carrier is
done by using an epitaxial lift-off process. Here, the thin film
to be transferred typically sits atop a “release-layer” (eg.
AlAs), this release layer is removed by etch procedures after
the thin film is attached to a temporary substrate. Scaling this
process to 4 inch wafers and bigger is difficult. Second, it is
very difficult to perform the bonding of TTO to semiconductor
materials of a LED layer at reasonable temperatures, as
described in the patent application Ser. No. 12/130,824.

It is therefore clear that a better method for constructing
RGB LEDs will be helpful. Since RGB LEDs are signifi-
cantly more efficient than pcLEDs, they can be used as
replacements of today’s phosphor-based LEDs for many
applications, provided a cheap and effective method of con-
structing RGB LEDs can be invented.

Background on Image-Sensors:

Image sensors are used in applications such as cameras.
Red, blue, and green components of the incident light are
sensed and stored in digital format. CMOS image sensors
typically contain a photodetector and sensing circuitry.
Almost all image sensors today have both the photodetector
and sensing circuitry on the same chip. Since the area con-
sumed by the sensing circuits is high, the photodetector can-
not see the entire incident light, and image capture is not as
efficient.

To tackle this problem, several researchers have proposed
building the photodetectors and the sensing circuitry on sepa-
rate chips and stacking them on top of each other. A publica-
tion that describes this method is “Megapixel CMOS image
sensor fabricated in three-dimensional integrated circuit tech-
nology”, Intl. Solid State Circuits Conference 2005 by
Suntharalingam, V., Berger, R., et al. (“Suntharalingam™).
These proposals use through-silicon via (TSV) technology
where alignment is done in conjunction with bonding. How-
ever, pixel size is reaching the 1 pm range, and successfully
processing TSVs in the 1 um range or below is very difficult.
This is due to alignment issues while bonding. For example,
the International Technology Roadmap for Semiconductors
(ITRS) suggests that the 2-4 um TSV pitch will be the indus-
try standard until 2012. A 2-4 um pitch TSV will be too big for
a sub-1 um pixel. Therefore, novel techniques of stacking
photodetectors and sensing circuitry are required.

A possible solution to this problem is given in “Setting up
3D Sequential Integration for Back-Illuminated CMOS
Image Sensors with Highly Miniaturized Pixels with Low
Temperature Fully-depleted SOI Transistors,” IEDM, p. 1-4
(2008) by P. Coudrain et al. (“Coudrain™). In the publication,
transistors are monolithically integrated on top of photode-
tectors. Unfortunately, transistor process temperatures reach
600° C. or more. This is not ideal for transistors (that require
a higher thermal budget) and photodetectors (that may prefer
a lower thermal budget).

Background on Displays:

Liquid Crystal Displays (LCDs) can be classified into two
types based on manufacturing technology utilized: (1) Large-
size displays that are made of amorphous/polycrystalline sili-
con thin-film-transistors (TFTs), and (2) Microdisplays that
utilize single-crystal silicon transistors. Microdisplays are
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typically used where very high resolution is needed, such as
camera/camcorder view-finders, projectors and wearable
computers.

Microdisplays are made in semiconductor fabs with 200
mm or 300 mm wafers. They are typically constructed with
LCOS (Liquid-Crystal-on-Silicon) Technology and are
reflective in nature. An exception to this trend of reflective
microdisplays is technology from Kopin Corporation (U.S.
Pat. No. 5,317,236, filed December 1991). This company
utilizes transmittive displays with a lift-off layer transfer
scheme. Transmittive displays may be generally preferred for
various applications.

While lift-off layer transfer schemes are viable for trans-
mittive displays, they are frequently not used for semicon-
ductor manufacturing due to yield issues. Therefore, other
layer transfer schemes will be helptul. However, it is not easy
to utilize other layer transfer schemes for making transistors
in microdisplays. For example, application of “smart-cut”
layer transfer to attach monocrystalline silicon transistors to
glass is described in “Integration of Single Crystal Si TFTs
and Circuits on a Large Glass Substrate”, IEDM 2009 by Y.
Takafuji, Y. Fukushima, K. Tomiyasu, et al. (“Takafuji”).
Unfortunately, hydrogen is implanted through the gate oxide
of transferred transistors in the process, and this degrades
performance. Process temperatures are as high as 600° C. in
this paper, and this requires costly glass substrates. Several
challenges therefore need to be overcome for efficient layer
transfer, and require innovation.

Background on Solar Cells:

Solar cells can be constructed of several materials such as,
for example, silicon and compound semiconductors. The
highest efficiency solar cells are typically multi-junction solar
cells that are constructed of compound semiconductor mate-
rials. These multi-junction solar cells are typically con-
structed on a germanium substrate, and semiconductors with
various band-gaps are epitaxially grown atop this substrate to
capture different portions of the solar spectrum.

There are a few issues with standard multi-junction solar
cells. Since multiple junctions are grown epitaxially above a
single substrate (such as Germanium) at high temperature,
materials used for different junctions are restricted to those
that have lattice constants and thermal expansion co-effi-
cients close to those of the substrate. Therefore, the choice of
materials used to build junctions for multi-junction solar cells
is limited. As a result, mostmulti-junction solar cells commer-
cially available today cannot capture the full solar spectrum.
Efficiency of the solar cell can be improved if a large band of
the solar spectrum is captured. Furthermore, multi-junction
solar cells today suffer from high cost of the substrate above
which multiple junctions are epitaxially grown. Methods to
build multi-junction solar cells that tackle both these issues
will be helpful.

A method of making multi-junction solar cells by mechani-
cally bonding two solar cells, one with a Germanium junction
and another with a compound semiconductor junction is
described in “Towards highly efficient 4-terminal mechanical
photovoltaic stacks”, I1I-Vs Review, Volume 19, Issue 7, Sep-
tember-October 2006 by Giovanni Flamand, Jef Poortmans
(“Flamand”). In this work, the authors make the compound
semiconductor junctions on a Germanium substrate epitaxi-
ally. They then etch away the entire Germanium substrate
after bonding to the other substrate with the Germanium
junction. The process uses two Germanium substrates, and is
therefore expensive.

Techniques to create multi-junction solar cells with layer
transfer have been described in “Wafer bonding and layer
transfer processes for 4-junction high efficiency solar cells,”
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Photovoltaic Specialists Conference, 2002. Conference
Record of the Twenty-Ninth IEEE, vol., no., pp. 1039-1042,
19-24 May 2002 by Zahler, J. M.; Fontcuberta i Morral, A.;
Chang-Geun Ahn; Atwater, H. A.; Wanlass, M. W.; Chu, C.
and Iles, P. A. An anneal is used for ion-cut purposes, and this
anneal is typically done at temperatures higher than 350-400°
C. (if high bond strength is desired). When that happens,
cracking and defects can be produced due to mismatch of
co-efficients of thermal expansion between various layers in
the stack. Furthermore, semiconductor layers are bonded
together, and the quality of this bond not as good as oxide-
to-oxide bonding, especially for lower process temperatures.

SUMMARY

Techniques to utilize layer transfer schemes such as ion-cut
to form novel light emitting diodes (LEDs), CMOS image
sensors, displays, microdisplays and solar cells are discussed.

In one aspect, an integrated device, the integrated device
including a first crystalline layer covered by an oxide layer, a
second crystalline layer overlying the oxide layer, wherein
the first and second crystalline layers are image sensor layers,
and the device includes a third crystalline layer, wherein the
third crystalline layer includes single crystal transistors.

In another aspect, an integrated image sensor, the inte-
grated image sensor including a first mono-crystal layer
including a plurality of image sensor pixels and alignment
marks, and an oxide layer overlaying and on top of the first
mono-crystal layer, and a second mono-crystal layer includ-
ing a plurality of second image sensor pixels aligned to the
alignment marks, and the second mono-crystal layer overlay-
ing the oxide layer, and a third mono-crystal layer, wherein
the third mono-crystal layer includes a plurality of single
crystal transistors aligned to the alignment marks.

In another aspect, an integrated device, the integrated
device including a first mono-crystal layer including a plural-
ity of single crystal transistors and alignment marks, and an
overlaying oxide on top of the first mono-crystal layer, and a
second mono-crystal layer overlaying the oxide, and wherein
the second mono-crystal layer includes a plurality of image
sensor pixels aligned to the alignment marks.

BRIEF DESCRIPTION OF THE DRAWINGS

Various embodiments of the present invention will be
understood and appreciated more fully from the following
detailed description, taken in conjunction with the drawings
in which:

FIGS. 1A-B illustrate red, green and blue type LEDs (prior
art);

FIG. 2 illustrates a conventional RGB LED where red,
green, and blue LEDs are placed side-by-side (prior art);

FIG. 3 illustrates a prior-art phosphor-based LED
(pcLEDY);

FIGS. 4A-S illustrate an embodiment of this invention,
where RGB LEDs are stacked with ion-cut technology, flip-
chip packaging and conductive oxide bonding;

FIGS. 5A-Q illustrate an embodiment of this invention,
where RGB LEDs are stacked with ion-cut technology, wire
bond packaging and conductive oxide bonding;

FIGS. 6A-L illustrate an embodiment of this invention,
where stacked RGB LEDs are formed with ion-cut technol-
ogy, flip-chip packaging and aligned bonding;

FIGS. 7A-L illustrate an embodiment of this invention,
where stacked RGB LEDs are formed with laser lift-off,
substrate etch, flip-chip packaging and conductive oxide
bonding;
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FIGS. 8A-B illustrate an embodiment of this invention,
where stacked RGB LEDs are formed from a wafer having
red LED layers and another wafer having both green and blue
LED layers;

FIG. 9 illustrates an embodiment of this invention, where
stacked RGB LEDs are formed with control and driver cir-
cuits for the LED built on the silicon sub-mount;

FIG. 10 illustrates an embodiment of this invention, where
stacked RGB LEDs are formed with control and driver cir-
cuits as well as image sensors for the LED built on the silicon
sub-mount;

FIGS. 11A-F is a prior art illustration of pcLEDs con-
structed with ion-cut processes;

FIGS. 12A-F illustrate an embodiment of this invention,
where pcLEDs are constructed with ion-cut processes;

FIG. 13 illustrates a prior art image sensor stacking tech-
nology where connections between chips are aligned during
bonding;

FIG. 14 describes two configurations for stacking photo-
detectors and read-out circuits;

FIGS. 15A-H illustrate an embodiment of this invention,
where a CMOS image sensor is formed by stacking a photo-
detector monolithically on top of read-out circuits using ion-
cut technology;

FIG. 16 illustrates the absorption process of different
wavelengths of light at different depths in silicon image sen-
sors;

FIGS. 17A-B illustrate an embodiment of this invention,
where red, green and blue photodetectors are stacked mono-
lithically atop read-out circuits using ion-cut technology (for
an image sensor);

FIGS. 18A-B illustrate an embodiment of this invention,
where red, green and blue photodetectors are stacked mono-
lithically atop read-out circuits using ion-cut technology for a
different configuration (for an image sensor);

FIGS. 19A-B illustrate an embodiment of this invention,
where an image sensor that can detect both visible and infra-
red light without any loss of resolution is constructed;

FIG. 20A illustrates an embodiment of this invention,
where polarization of incoming light is detected;

FIG. 20B illustrates another embodiment of this invention,
where an image sensor with high dynamic range is con-
structed;

FIG. 21 illustrates an embodiment of this invention, where
read-out circuits are constructed monolithically above pho-
todetectors in an image sensor;

FIGS. 22A-G illustrate an embodiment of this invention,
where a display is constructed using sub-400° C. processed
single crystal silicon recessed channel transistors on a glass
substrate;

FIGS. 23A-H illustrate an embodiment of this invention,
where a display is constructed using sub-400° C. processed
single crystal silicon replacement gate transistors on a glass
substrate;

FIGS. 24A-F illustrate an embodiment of this invention,
where a display is constructed using sub-400° C. processed
single crystal junctionless transistors on a glass substrate;

FIGS. 25A-D illustrate an embodiment of this invention,
where a display is constructed using sub-400° C. processed
amorphous silicon or polysilicon junctionless transistors on a
glass substrate;

FIGS. 26 A-C illustrate an embodiment of this invention,
where a microdisplay is constructed using stacked RGB
LEDs and control circuits are connected to each pixel with
solder bumps;
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FIGS. 27A-D illustrate an embodiment of this invention,
where a microdisplay is constructed using stacked RGB
LEDs and control circuits are monolithically stacked above
the LED;

FIGS. 28A-C illustrate a description of multijunction solar
cells (prior art);

FIGS. 29A-H illustrate an embodiment of this invention,
where multijunction solar cells are constructed using sub-
250° C. bond and cleave processes; and

FIGS. 30A-D illustrate an embodiment of this invention,
where a full-spectrum multi-junction solar cells is con-
structed using sub-250° C. bond and cleave processes.

DETAILED DESCRIPTION

Embodiments of the present invention are now described
with reference to FIGS. 1-30, it being appreciated that the
figures illustrate the subject matter not to scale or to measure.
NuLED Technology:

FIG. 1A illustrates a cross-section of prior art red LEDs.
Red LEDs are typically constructed on a Gallium Arsenide
substrate 100. Alternatively, Gallium Phosphide or some
other material can be used for the substrate. Since Gallium
Arsenide 100 is opaque, a Bragg Reflector 101 is added to
ensure light moves in the upward direction. Red light is pro-
duced by a p-njunction with multiple quantum wells (MQW).
A p-type confinement layer 104, a n-type confinement layer
102 and a multiple quantum well 103 form this part of the
device. A current spreading region 105 ensures current flows
throughout the whole device and not just close to the contacts.
Indium Tin Oxide (ITO) could be used for the current spread-
ing region 105. A top contact 106 and a bottom contact 107
are used for making connections to the LED. It will be obvi-
ous to one skilled in the art based on the present disclosure
that many configurations and material combinations for mak-
ing red LEDs are possible. This invention is not limited to one
particular configuration or set of materials.

FIG. 1B also illustrates green and blue LED cross-sections.
These are typically constructed on a sapphire, SiC or bulk-
GaN substrate, indicated by 108. Light is produced by a p-n
junction with multiple quantum wells made of In, Ga, N/
GaN. A p-type confinement layer 111, a n-type confinement
layer 109 and a multiple quantum well 110 form this part of
the device. The value of subscript x in In,Ga, N determines
whether blue light or green light is produced. For example,
blue light typically corresponds to x ranging from 10% to
20% while green light typically corresponds to X ranging
from 20% to 30%. A current spreader 112 is typically used as
well. ITO could be a material used for the current spreader
112. An alternative material for current spreading could be
Zn0O. A top contact 113 and a bottom contact 114 are used for
making connections to the LED. It will be obvious to one
skilled in the art based on the present disclosure that many
configurations and material combinations for making blue
and green LEDs are possible. This invention is not limited to
one particular configuration or set of materials.

White LEDs for various applications can be constructed in
two ways. Method 1 is described in FIG. 2 which shows Red
LED 201, blue LED 202, and green LED 203 that are con-
structed separately and placed side-by-side. Red light 204,
blue light 205 and green light 206 are mixed to form white
light 207. While these “RGB LEDs” are efficient, they suffer
from cost issues and have problems related to light mixing.
Method 2 is described in FIG. 3 which shows a blue LED 301
constructed and coated with a phosphor layer 302. The yellow
phosphor layer converts blue light into white light 303. These
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“Phosphor-based LEDs” or “pcLLEDs” are cheaper than RGB
LEDs but are typically not as efficient.

FIG. 4A-S illustrate an embodiment of this invention
where Red, Blue, and Green LEDs are stacked on top of each
other with smart layer transfer techniques. A smart layer
transfer may be defined as one or more of the following
processes:

Ton-cut, variations of which are referred to as smart-cut,
nano-cleave and smart-cleave: Further information on
ion-cut technology is given in “Frontiers of silicon-on-
insulator,” J. Appl. Phys. 93, 4955-4978 (2003) by G. K.
Celler and S. Cristolovean (“Celler”) and also in
“Mechanically induced Si layer transfer in hydrogen-
implanted Si wafers,” Appl. Phys. Lett., vol. 76, pp.
2370-2372, 2000 by K. Henttinen, 1. Suni, and S. S. Lau
(“Hentinnen™).

Porous silicon approaches such as ELTRAN: These are
described in “Eltran, Novel SOI Wafer Technology,”
JSAP International, Number 4, July 2001 by T. Yonehara
and K. Sakaguchi (“Yonehara”).

Bonding a substrate with single crystal layers followed by
Polishing, Time-controlled etch-back or Etch-stop layer
controlled etch-back to thin the bonded substrate: These
are described in U.S. Pat. No. 6,806,171 by A. Ulyashin
and A. Usenko (“Ulyashin”) and “Enabling SOI-Based
Assembly Technology for Three-Dimensional (3D)
Integrated Circuits (ICs),” IEDM Tech. Digest, p. 363
(2005) by A. W. Topol, D. C. La Tulipe, L. Shi, S. M.
Alam, D. J. Frank, S. E. Steen, J. Vichiconti, D. Posil-
lico, M. Cobb, S. Medd, J. Patel, S. Goma, D. DiMilia,
M. T. Robson, E. Duch, M. Farinelli, C. Wang, R. A.
Conti, D. M. Canaperi, L. Deligianni, A. Kumar, K. T.
Kwietniak, C. D’Emic, J. Ott, A. M. Young, K. W.
Guarini, and M. leong (“Topol”).

Bonding a wafer with a Gallium Nitride film epitaxially
grown on a sapphire substrate followed by laser lift-off
for removing the transparent sapphire substrate: This
method may be suitable for deposition of Gallium
Nitride thin films, and is described in U.S. Pat. No.
6,071,795 by Nathan W. Cheung, Timothy D. Sands and
William S. Wong (“Cheung”).

Rubber stamp layer transfer: This is described in “Solar
cells sliced and diced,” 19 May 2010, Nature News.

This process of constructing RGB LEDs could include
several steps that occur in a sequence from Step (A) to
Step (S). Many of them share common characteristics, fea-
tures, modes of operation, etc. When the same reference
numbers are used in different drawing figures, they are used to
indicate analogous, similar or identical structures to enhance
the understanding of the present invention by clarifying the
relationships between the structures and embodiments pre-
sented in the various diagrams—particularly in relating
analogous, similar or identical functionality to different
physical structures.

Step (A) is illustrated in FIG. 4A. A red LED wafer 436 is
constructed on a GaAs substrate 402 and includes a N-type
confinement layer 404, a multiple quantum well (MQW) 406,
a P-type confinement layer 408, an optional reflector 409 and
an ['TO current spreader 410. Examples of materials used to
construct these layers, include, but are not limited to, doped
AllnGaP for the N-type confinement layer 404 and P-type
confinement layer 408, the multiple quantum well layer 406
could be of AllnGaP and GalnP and the optional reflector 409
could be a distributed Bragg Reflector. A double heterostruc-
ture configuration or single quantum well configuration could
be used instead of a multiple quantum well configuration.
Various other material types and configurations could be used



US 9,419,031 B1

9

for constructing the red LEDs for this process. Yet another
wafer is constructed with a green LED. The green LED wafer
438 is constructed on a sapphire or SiC or bulk-GaN substrate
412 and includes a N-type confinement layer 414, a multiple
quantum well (MQW) 416, a buffer layer 418, a P-type con-
finement layer 420, an optional reflector 421 and an ITO
current spreader 422. Yet another wafer is constructed with a
blue LED. The blue LED wafer 440 is constructed on a
sapphire or SiC or bulk-GaN substrate 424 and includes a
N-type confinement layer 426, a multiple quantum well
(MQW) 428, a buffer layer 430, a P-type confinement layer
432, an optional reflector 433 and an ITO current spreader
434. Examples of materials used to construct these blue and
green LED layers, include, but are not limited to, doped GaN
for the N-type and P-type confinement layers 414, 420, 426
and 432, AlGaN for the buffer layers 430 and 418 and InGaN/
GaN for the multiple quantum wells 416 and 428. The
optional reflectors 421 and 433 could be distributed Bragg
Reflectors or some other type of reflectors. Various other
material types and configurations could be used for construct-
ing blue and green LEDs for this process.

Step (B) is illustrated in FIG. 4B. The blue LED wafer 440
from FIG. 4A is used for this step. Various elements in FIG.
4B such as, for example, 424, 426, 428, 430, 432, 433, and
434 have been previously described. Hydrogen is implanted
into the wafer at a certain depth indicated by dotted lines 442.
Alternatively, helium could be used for this step.

Step (C) is illustrated in FIG. 4C. A glass substrate 446 is
taken and an I'TO layer 444 is deposited atop it.

Step (D) is illustrated in FIG. 4D. The wafer shown in FIG. 4B
is flipped and bonded atop the wafer shown in FIG. 4C using
ITO-ITO bonding. Various elements in FIG. 4D such as 424,
426, 428, 430, 432, 433, 434, 442, 446, and 444 have been
previously described. The ITO layer 444 is essentially bonded
to the ITO layer 434 using an oxide-to-oxide bonding pro-
cess.

Step (E) is illustrated in FIG. 4E. Various elements in FIG. 4E
such as 424, 426, 428,430,432, 433, 434, 442, 446, and 444
have been previously described. An ion-cut process is con-
ducted to cleave the structure shown in FIG. 4D at the hydro-
gen implant plane 442. This ion-cut process may use a
mechanical cleave. An anneal process could be utilized for the
cleave as well. After the cleave, a chemical mechanical polish
(CMP) process is conducted to planarize the surface. The
N-type confinement layer present after this cleave and CMP
process is indicated as 427.

Step (F) is illustrated in FIG. 4F. Various elements in FIG. 4F
such as 446, 444, 434, 433, 432, 430, 428, and 427 have been
previously described. An ITO layer 448 is deposited atop the
N-type confinement layer 427.

Step (G) is illustrated in FIG. 4G. The green LED wafer 438
shown in Step (A) is used for this step. Various elements in
FIG. 4G such as 412, 414, 416, 418, 420, 421, and 422 have
been described previously. Hydrogen is implanted into the
wafer at a certain depth indicated by dotted lines 450. Alter-
natively, helium could be used for this step.

Step (H) is illustrated in FIG. 4H. The structure shown in FIG.
4G is flipped and bonded atop the structure shown in FIG. 4F
using ITO-ITO bonding. Various elements in FIG. 4H such as
446, 444, 434, 433, 432, 430, 428, 427, 448, 412, 414, 416,
418, 420, 421, 422, and 450 have been described previously.
Step (1) is illustrated in FIG. 41. The structure shown in FIG.
4H is cleaved at the hydrogen plane indicated by 450. This
cleave process may be preferably done with a mechanical
force. Alternatively, an anneal could be used. A CMP process
is conducted to planarize the surface. Various elements in
FIG. 41 such as 446, 444, 434, 433, 432, 430, 428, 427, 448,
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416, 418, 420, 421, and 422 have been described previously.
The N-type confinement layer present after this cleave and
CMP process is indicated as 415.
Step (J) is illustrated in FIG. 4]. AnITO layer 452 is deposited
atop the structure shown in FIG. 41. Various elements in FIG.
4] such as 446, 444, 434, 433, 432, 430, 428, 427, 448, 416,
418, 420, 421, 415, and 422 have been described previously.
Step (K) is illustrated in FIG. 4K. The red LED wafer 436
shown in Step (A) is used for this step. Various elements in
FIG. 4K such as 402, 404, 406, 408, 409, and 410 have been
described previously. Hydrogen is implanted into the wafer at
a certain depth indicated by dotted lines 454. Alternatively,
helium could be used for this step.
Step (L) is illustrated in FIG. 4L.. The structure shown in FIG.
4K is flipped and bonded atop the structure shown in FI1G. 4]
using ITO-ITO bonding. Various elements in FIG. 4L, such as
446, 444, 434, 433, 432, 430, 428, 427, 448, 416, 418, 420,
421, 415, 422, 452, 402, 404, 406, 408, 409, 410, and 454
have been described previously.
Step (M) is illustrated in FIG. 4M. The structure shown in
FIG. 4L is cleaved at the hydrogen plane 454. A mechanical
force could be used for this cleave. Alternatively, an anneal
could be used. A CMP process is then conducted to planarize
the surface. The N-type confinement layer present after this
process is indicated as 405. Various elements in FIG. 4M such
as 446,444,434, 433, 432,430,428, 427,448, 416, 418, 420,
421, 415, 422, 452, 406, 408, 409, and 410 have been
described previously.
Step (N) is illustrated in FIG. 4N. An ITO layer 456 is depos-
ited atop the structure shown in FIG. 4M. Various elements in
FIG. 4M such as 446, 444, 434, 433,432, 430, 428, 427, 448,
416,418,420,421,415,422, 452,406, 408,409,410, and 405
have been described previously.
Step (O) is illustrated in FIG. 40. A reflecting material layer
458, constructed for example with Aluminum or Silver, is
deposited atop the structure shown in FIG. 4N. Various ele-
ments in FIG. 40 such as 446, 444, 434, 433, 432, 430, 428,
427, 448, 416, 418, 420, 421, 415, 422, 452, 406, 408, 409,
410, 456, and 405 have been described previously.
Step (P) is illustrated in FIG. 4P. The process of making
contacts to various layers and packaging begins with this step.
A contact and bonding process similar to the one used in
“High-power AlGalnN flip-chip light-emitting diodes,”
Applied Physics Letters, vol. 78, no. 22, pp. 3379-3381, May
2001, by Wierer, J. I.; Steigerwald, D. A.; Krames, M. R.;
OShea, I. J.; Ludowise, M. I.; Christenson, G.; Shen, Y.-C.;
Lowery, C.; Martin, P. S.; Subramanya, S.; Gotz, W.; Gardner,
N.F.; Kern, R. S.; Stockman, S. A. is used. Vias 460 are etched
to different layers of the LED stack. Various elements in FI1G.
4P such as 446, 444, 434, 433, 432, 430, 428, 427, 448, 416,
418, 420, 421, 415, 422, 452, 406, 408, 409, 410, 456, 405,
and 458 have been described previously. After the via holes
460 are etched, they may optionally be filled with an oxide
layer and polished with CMP. This fill with oxide may be
optional, and the preferred process may be to leave the via
holes as such without fill. Note that the term contact holes
could be used instead of the term via holes. Similarly, the term
contacts could be used instead of the term vias.
Step (Q) is illustrated in FIG. 4Q. Aluminum is deposited to
fill via holes 460 from FIG. 4P. Following this deposition, a
lithography and etch process is utilized to define the alumi-
num metal to form vias 462. The vias 462 are smaller in
diameter than the via holes 460 shown in FIG. 4P. Various
elements in FIG. 4Q such as 446, 444, 434, 433, 432, 430,
428, 427, 448, 416, 418, 420, 421, 415, 422, 452, 406, 408,
409, 410, 456, 405, 460, and 458 have been described previ-
ously.
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Step (R) is illustrated in FIG. 4R. A nickel layer 464 and a
solder layer 466 are formed using standard procedures. Vari-
ous elements in FIG. 4R such as 446, 444, 434, 433, 432, 430,
428, 427, 448, 416, 418, 420, 421, 415, 422, 452, 406, 408,
409, 410, 456, 405, 460, 462, and 458 have been described
previously.

Step (S) is illustrated in FIG. 4S. The solder layer 466 is then
bonded to pads on a silicon sub-mount 468. Various elements
in FIG. 4S such as 446, 444, 434, 433, 432, 430, 428, 427,
448, 416, 418, 420, 421, 415, 422, 452, 406, 408, 409, 410,
456, 405, 460, 462, 458, 464, and 466 have been described
previously. The configuration of optional reflectors 433, 421,
and 409 determines light output coming from the LED. A
preferred embodiment of this invention may not have a reflec-
tor 433, and may have the reflector 421 (reflecting only the
blue light produced by multiple quantum well 428) and the
reflector 409 (reflecting only the green light produced by
multiple quantum well 416). In the process described in FI1G.
4A-FIG. 48, the original substrates in FIG. 4A, namely 402,
412 and 424, can be reused after ion-cut. This reuse may make
the process more cost-effective.

FIGS. 5A-Q describe an embodiment of this invention,
where RGB LEDs are stacked with ion-cut technology, wire
bond packaging and conductive oxide bonding. Essentially,
smart-layer transfer is utilized to construct this embodiment
of the invention. This process of constructing RGB LEDs
could include several steps that occur in a sequence from Step
(A) to Step (Q). Many of the steps share common character-
istics, features, modes of operation, etc. When the same ref-
erence numbers are used in different drawing figures, they are
used to indicate analogous, similar or identical structures to
enhance the understanding of the present invention by clari-
fying the relationships between the structures and embodi-
ments presented in the various diagrams—particularly in
relating analogous, similar or identical functionality to dif-
ferent physical structures.

Step (A): This is illustrated using FIG. 5A. A red LED wafer
536 is constructed on a GaAs substrate 502 and includes a
N-type confinement layer 504, a multiple quantum well
(MQW) 506, a P-type confinement layer 508, an optional
reflector 509 and an ITO current spreader 510. Examples of
materials used to construct these layers, include, but are not
limited to, doped AllnGaP for the N-type confinement layer
504 and P-type confinement layer 508, the multiple quantum
well layer 506 could be of AllnGaP and GalnP and the
optional reflector 509 could be a distributed Bragg Reflector.
A double heterostructure configuration or single quantum
well configuration could be used instead of a multiple quan-
tum well configuration. Various other material types and con-
figurations could be used for constructing the red LEDs for
this process. Yet another wafer is constructed with a green
LED. The green LED wafer 538 is constructed on a sapphire
or SiC or bulk-GaN substrate 512 and includes a N-type
confinement layer 514, a multiple quantum well (MQW) 516,
a buffer layer 518, a P-type confinement layer 520, an
optional reflector 521 and an ITO current spreader 522. Yet
another wafer is constructed with a blue LED. The blue LED
wafer 540 is constructed on a sapphire or SiC or bulk-GaN
substrate 524 and includes a N-type confinement layer 526, a
multiple quantum well (MQW) 528, a buffer layer 530, a
P-type confinement layer 532, an optional reflector 533 and
an ['TO current spreader 534. Examples of materials used to
construct these blue and green LED layers, include, but are
not limited to, doped GaN (for the N-type and P-type con-
finement layers 514, 520, 526, and 532), AlGaN (for the
buffer layers 530 and 518), and InGaN/GaN (for the multiple
quantum wells 516 and 528). The optional reflectors 521 and
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533 could be distributed Bragg Reflectors or some other type
of reflectors. Various other material types and configurations
could be used for constructing blue and green LEDs for this
process.

Step (B) is illustrated in FIG. 5B. The red LED wafer 536
from FIG. 5A is used for this step. Various elements in FIG.
5B such as 502, 504, 506, 508, 509, and 510 have been
previously described. Hydrogen is implanted into the wafer at
a certain depth indicated by dotted lines 542. Alternatively,
helium could be used for this step.

Step (C) is illustrated in FIG. 5C. A silicon substrate 546 is
taken and an I'TO layer 544 is deposited atop it.

Step (D) is illustrated in FIG. 5D. The wafer shown in FIG. 5B
is flipped and bonded atop the water shown in FIG. 5C using
ITO-ITO bonding. Various elements in FIG. 5D such as 502,
504, 506, 508, 509, 510, 542, 544, and 546 have been previ-
ously described. The ITO layer 544 is essentially bonded to
the ITO layer 510 using an oxide-to-oxide bonding process.
Step (E) is illustrated in FIG. 5E. Various elements in FIG. 5E
such as 506, 508, 509, 510, 544 and 546 have been previously
described. An ion-cut process is conducted to cleave the struc-
ture shown in FIG. 5D at the hydrogen implant plane 542.
This ion-cut process could preferably use a mechanical
cleave. An anneal process could be utilized for the cleave as
well. After the cleave, a chemical mechanical polish (CMP)
process is conducted to planarize the surface. The N-type
confinement layer present after this cleave and CMP process
is indicated as 505.

Step (F) is illustrated in FIG. 5F. Various elements in FIG. 5F
such as 505, 506, 508, 509, 510, 544, and 546 have been
previously described. An ITO layer 548 is deposited atop the
N-type confinement layer 505.

Step (G) is illustrated in FIG. 5G. The green LED wafer 538
shown in Step (A) is used for this step. Various elements in
FIG. 5G such as 512, 514, 516, 518, 520, 521, and 522 have
been described previously. Hydrogen is implanted into the
wafer at a certain depth indicated by dotted lines 550. Alter-
natively, helium could be used for this step.

Step (H) is illustrated in FIG. SH. The structure shown in FIG.
5G is flipped and bonded atop the structure shown in FIG. 5F
using ITO-ITO bonding. Various elements in FIG. SH such as
505, 506, 508, 509, 510, 544, 546, 548, 512, 514, 516, 518,
520, 521, 550, and 522 have been described previously.
Step (1) is illustrated in FIG. 51. The structure shown in FIG.
5H is cleaved at the hydrogen plane indicated by 550. This
cleave process may be preferably done with a mechanical
force. Alternatively, an anneal could be used. A CMP process
is conducted to planarize the surface. Various elements in
FIG. 51 such as 505, 506, 508, 509, 510, 544, 546, 548, 516,
518, 520, 521, and 522 have been described previously. The
N-type confinement layer present after this cleave and CMP
process is indicated as 515.

Step (J) is illustrated using FIG. 5J. An ITO layer 552 is
deposited atop the structure shown in FIG. 51. Various ele-
ments in FIG. 5] such as 505, 506, 508, 509, 510, 544, 546,
548, 516, 518, 520, 521, 515, and 522 have been described
previously.

Step (K) is illustrated using FI1G. 5K. The blue LED wafer 540
from FIG. 5A is used for this step. Various elements in FIG.
5K such as 524, 526, 528, 530, 532, 533, and 534 have been
previously described. Hydrogen is implanted into the wafer at
a certain depth indicated by dotted lines 554. Alternatively,
helium could be used for this step.

Step (L) is illustrated in FIG. 5L.. The structure shown in FIG.
5K is flipped and bonded atop the structure shown in FIG. 5]
using ITO-ITO bonding. Various elements in FIG. 4L, such as
505, 506, 508, 509, 510, 544, 546, 548, 516, 518, 520, 521,
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515, 522, 552, 524, 526, 528, 530, 532, 533, 554, and 534
have been described previously.
Step (M) is illustrated in FIG. 5M. The structure shown in
FIG. 5L is cleaved at the hydrogen plane 554. A mechanical
force could be used for this cleave. Alternatively, an anneal
could be used. A CMP process is then conducted to planarize
the surface. The N-type confinement layer present after this
process is indicated as 527. Various elements in FIG. 5M such
as 505,506, 508, 509, 510, 544, 546, 548, 516, 518, 520, 521,
515, 522, 552, 528, 530, 532, 533, and 534 have been
described previously.
Step (N) is illustrated in FIG. SN. An ITO layer 556 is depos-
ited atop the structure shown in FIG. 5M. Various elements in
FIG. 5N such as 505, 506, 508, 509, 510, 544, 546, 548, 516,
518, 520, 521, 515, 522, 552, 528, 530, 532, 533, and 534
have been described previously.
Step (O) is illustrated in FIG. 50. The process of making
contacts to various layers and packaging begins with this step.
Various elements in FIG. 50 such as 505, 506, 508, 509, 510,
544, 546, 548, 516, 518, 520, 521, 515, 522, 552, 528, 530,
532, 533, 556, and 534 have been described previously. Via
holes 560 are etched to different layers of the LED stack.
After the via holes 560 are etched, they may optionally be
filled with an oxide layer and polished with CMP. This fill
with oxide may be optional, and the preferred process may be
to leave the via holes as such without fill.
Step (P) is illustrated in FIG. 5P. Aluminum is deposited to fill
via holes 560 from FIG. 50. Following this deposition, a
lithography and etch process is utilized to define the alumi-
num metal to form via holes 562. Various elements in FIG. 5P
such as 505, 506, 508, 509, 510, 544, 546, 548, 516, 518, 520,
521, 515, 522, 552, 528, 530, 532, 533, 556, 560, and 534
have been described previously.
Step (Q) is illustrated in FIG. 5Q. Bond pads 564 are con-
structed and wire bonds are attached to these bond pads
following this step. Various elements in FIG. 5Q such as 505,
506, 508, 509, 510, 544, 546, 548, 516, 518, 520, 521, 515,
522, 552, 528, 530, 532, 533, 556, 560, 562, and 534 have
been described previously. The configuration of optional
reflectors 533, 521 and 509 determines light output coming
from the LED. The preferred embodiment of this invention is
to have reflector 533 reflect only blue light produced by
multiple quantum well 528, to have the reflector 521 reflect-
ing only green light produced by multiple quantum well 516
and to have the reflector 509 reflect light produced by mul-
tiple quantum well 506. In the process described in FIG.
5A-FIG. 5Q, the original substrates in FIG. 5A, namely 502,
512 and 524, can be re-used after ion-cut. This may make the
process more cost-eftective.

FIGS. 6A-L show an alternative embodiment of this inven-
tion, where stacked RGB LEDs are formed with ion-cut tech-
nology, flip-chip packaging and aligned bonding. A smart
layer transfer process, ion-cut, is therefore utilized. This pro-
cess of constructing RGB LEDs could include several steps
that occur in a sequence from Step (A) to Step (K). Many of
the steps share common characteristics, features, modes of
operation, etc. When identical reference numbers are used in
different drawing figures, they are used to indicate analogous,
similar or identical structures to enhance the understanding of
the present invention by clarifying the relationships between
the structures and embodiments presented in the various dia-
grams—particularly in relating analogous, similar or identi-
cal functionality to different physical structures.

Step (A) is illustrated in FIG. 6A. A red LED wafer 636 is
constructed on a GaAs substrate 602 and includes a N-type
confinement layer 604, a multiple quantum well (MQW) 606,
a P-type confinement layer 608, an optional reflector 609 and
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an [TO current spreader 610. Above the ITO current spreader
610, a layer of silicon oxide 692 is deposited, patterned,
etched and filled with a metal 690 (e.g., tungsten) which is
then CMPed. Examples of materials used to construct these
layers, include, but are not limited to, doped AllnGaP for the
N-type confinement layer 604 and P-type confinement layer
608, the multiple quantum well layer 606 could be of Alln-
GaP and GalnP and the optional reflector 609 could be a
distributed Bragg Reflector. A double heterostructure con-
figuration or single quantum well configuration could be used
instead of a multiple quantum well configuration. Various
other material types and configurations could be used for
constructing the red LEDs for this process. Yet another wafer
is constructed with a green LED. The green LED wafer 638 is
constructed on a sapphire or SiC or bulk-GaN substrate 612
and includes a N-type confinement layer 614, a multiple
quantum well (MQW) 616, a buffer layer 618, a P-type con-
finement layer 620, an optional reflector 621 and an 1TO
current spreader 622. Above the ITO current spreader 622, a
layer of silicon oxide 696 is deposited, patterned, etched and
filled with a metal 694 (e.g., tungsten) which is then CMPed.
Yet another wafer is constructed with a blue LED. The blue
LED wafer 640 is constructed on a sapphire or SiC or bulk-
GaN substrate 624 and includes a N-type confinement layer
626, a multiple quantum well (MQW) 628, a buffer layer 630,
a P-type confinement layer 632, an optional reflector 633 and
an [TO current spreader 634. Above the ITO current spreader
634, a layer of silicon dioxide 698 is deposited. Examples of
materials used to construct these blue and green LED layers,
include, but are not limited to, doped GaN for the N-type and
P-type confinement layers 614, 620, 626 and 632, AlGaN for
the buffer layers 630 and 618 and InGaN/GaN for the mul-
tiple quantum wells 616 and 628. The optional reflectors 621
and 633 could be distributed Bragg Reflectors or some other
type of reflectors. Various other material types and configu-
rations could be used for constructing blue and green LEDs
for this process.

Step (B) is illustrated in FIG. 6B. The blue LED wafer 640
from FIG. 6A is used for this step. Various elements in FIG.
6B such as 624, 626, 628, 630, 632, 633, 698, and 634 have
been previously described. Hydrogen is implanted into the
wafer at a certain depth indicated by dotted lines 642. Alter-
nately, helium could be used for this step.

Step (C) is illustrated in FIG. 6C. A glass substrate 646 is
taken and a silicon dioxide layer 688 is deposited atop it.
Step (D) is illustrated in FIG. 6D. The wafer shown in FIG. 6B
is flipped and bonded atop the wafer shown in FIG. 6C using
oxide-oxide bonding. Various elements in FIG. 6D such as
624, 626, 628, 630, 632, 633, 698, 642, 646, 688, and 634
have been previously described. The oxide layer 688 is essen-
tially bonded to the oxide layer 698 using an oxide-to-oxide
bonding process.

Step (E) is illustrated in FIG. 6E. Various elements in FIG. 6E
such as 628, 630, 632, 633, 698, 646, 688, and 634 have been
previously described. An ion-cut process is conducted to
cleave the structure shown in FIG. 6D at the hydrogen implant
plane 642. This ion-cut process may be preferably using a
mechanical cleave. An anneal process could be utilized for the
cleave as well. After the cleave, a chemical mechanical polish
(CMP) process is conducted to planarize the surface. The
N-type confinement layer present after this cleave and CMP
process is indicated as 627.

Step (F) is illustrated in FIG. 6F. Various elements in FIG. 6F
such as 628, 630, 632, 633, 698, 646, 688, 627, and 634 have
been previously described. An ITO layer 648 is deposited
atop the N-type confinement layer 627. Above the ITO layer
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648, a layer of silicon oxide 686 is deposited, patterned,
etched and filled with a metal 684 (e.g., tungsten) which is
then CMPed.

Step (G) is illustrated in FIG. 6G. The green LED wafer 638
shown in Step (A) is used for this step. Various elements in
FIG. 6G such as 612, 614, 616, 618, 620, 621, 696, 694, and
622 have been described previously. Hydrogen is implanted
into the wafer at a certain depth indicated by dotted lines 650.
Alternatively, helium could be used for this step.

Step (H) is illustrated in FIG. 6H. The structure shown in FIG.
6G is flipped and bonded atop the structure shown in FIG. 6F
using oxide-oxide bonding. The metal regions 694 and 684 on
the bonded wafers are aligned to each other. Various elements
in FIG. 6H such as 628, 630, 632, 633, 698, 646, 688, 627,
634, 648, 686, 684, 612, 614, 616, 618, 620, 621, 696, 694,
650, and 622 have been described previously.

Step (1) is illustrated in FIG. 61. The structure shown in FIG.
6H is cleaved at the hydrogen plane indicated by 650. This
cleave process may be preferably done with a mechanical
force. Alternatively, an anneal could be used. A CMP process
is conducted to planarize the surface. Various elements in
FIG. 6l such as 628, 630, 632, 633, 698, 646, 688, 627, 634,
648, 686, 684, 616, 618, 620, 621, 696, 694, and 622 have
been described previously. The N-type confinement layer
present after this cleave and CMP process is indicated as 615.
Step (J) is illustrated in FIG. 6J. AnITO layer 652 is deposited
atop the structure shown in FIG. 61. Above the ITO layer 652,
alayer of silicon oxide 682 is deposited, patterned, etched and
filled with a metal 680 (e.g., tungsten) which is then CMPed.
Various elements in FIG. 6] such as 628, 630, 632, 633, 698,
646, 688, 627, 634, 648, 686, 684, 616, 618, 620, 621, 696,
694, 615, and 622 have been described previously.

Step (K) is illustrated in FI1G. 6K. Using procedures similar to
Step (G)-Step (J), the red LED layer is transferred atop the
structure shown in FIG. 6J. The N-type confinement layer
after ion-cut is indicated by 605. An ITO layer 656 is depos-
ited atop the N-type confinement layer 605. Various elements
in FIG. 6K such as 628, 630, 632, 633, 698, 646, 688, 627,
634, 648, 686, 684, 616, 618, 620, 621, 696, 694, 615, 690,
692, 610, 609, 608, 606, and 622 have been described previ-
ously.

Step (L) is illustrated in FIG. 6L. Using flip-chip packaging
procedures similar to those described in FIG. 4A-FIG. 45, the
RGB LED stack shown in FIG. 6K is attached to a silicon
sub-mount 668. 658 indicates a reflecting material, 664 is a
nickel layer, 666 represents solder bumps, 670 is an alumi-
num via, and 672 is either an oxide layer or an air gap. Various
elements in FIG. 6K such as 628, 630, 632, 633, 698, 646,
688, 627, 634, 648, 686, 684, 616, 618, 620, 621, 696, 694,
615, 690, 692, 610, 609, 608, 606, 605, 656, and 622 have
been described previously. The configuration of optional
reflectors 633, 621 and 609 determines light output coming
from the LED. A preferred embodiment of this invention may
not have a reflector 633, but may have the reflector 621
(reflecting only the blue light produced by multiple quantum
well 628) and the reflector 609 (reflecting only the green light
produced by multiple quantum well 616). In the process
described in FIG. 6 A-FIG. 6L, the original substrates in FIG.
6A, namely 602, 612, and 624, can be re-used after ion-cut.
This may make the process more cost-eftective.

FIGS. 7A-L illustrate an embodiment of this invention,
where stacked RGB LEDs are formed with laser lift-off,
substrate etch, flip-chip packaging and conductive oxide
bonding. Essentially, smart layer transfer techniques are
used. This process could include several steps that occur in a
sequence from Step (A) to Step (M). Many of the steps share
common characteristics, features, modes of operation, etc.
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When identical reference numbers are used in different draw-
ing figures, they are used to indicate analogous, similar or
identical structures to enhance the understanding of the
present invention by clarifying the relationships between the
structures and embodiments presented in the various dia-
grams—particularly in relating analogous, similar or identi-
cal functionality to different physical structures.

Step (A): This is illustrated using FIG. 7A. A red LED wafer
736 is constructed on a GaAs substrate 702 and includes a
N-type confinement layer 704, a multiple quantum well
(MQW) 706, a P-type confinement layer 708, an optional
reflector 709 and an ITO current spreader 710. Examples of
materials used to construct these layers, include, but are not
limited to, doped AllnGaP for the N-type confinement layer
704 and P-type confinement layer 708, the multiple quantum
well layer 706 could be of AllnGaP and GalnP and the
optional reflector 409 could be a distributed Bragg Reflector.
A double heterostructure configuration or single quantum
well configuration could be used instead of a multiple quan-
tum well configuration. Various other material types and con-
figurations could be used for constructing the red LEDs for
this process. Yet another wafer is constructed with a green
LED. The green LED wafer 738 is constructed on a sapphire
substrate 712 (or some other transparent substrate) and
includes a N-type confinement layer 714, a multiple quantum
well (MQW) 716, a bufter layer 718, a P-type confinement
layer 720, an optional reflector 721 and an ITO current
spreader 722. Yet another wafer is constructed with a blue
LED. The blue LED wafer 740 is constructed on a sapphire
substrate 724 (or some other transparent substrate) and
includes a N-type confinement layer 726, a multiple quantum
well (MQW) 728, a bufter layer 730, a P-type confinement
layer 732, an optional reflector 733 and an ITO current
spreader 734. Examples of materials used to construct these
blue and green LED layers, include, but are not limited to,
doped GaN for the N-type and P-type confinement layers 714,
720, 726 and 732, AlGaN for the buffer layers 730 and 718
and InGaN/GaN for the multiple quantum wells 716 and 728.
The optional reflectors 721 and 733 could be distributed
Bragg Reflectors or some other type of reflectors. Various
other material types and configurations could be used for
constructing blue and green LEDs for this process.

Step (B) is illustrated in FIG. 7B. A glass substrate 746 is
taken and an I'TO layer 744 is deposited atop it.

Step (C) is illustrated in FIG. 7C. The blue LED wafer 740
shown in FIG. 7A is flipped and bonded atop the wafer shown
in FIG. 7B using ITO-ITO bonding. Various elements in FIG.
7C such as 724, 726, 728, 730, 732, 733, 734, 746, and 744
have been previously described. The ITO layer 744 is essen-
tially bonded to the ITO layer 734 using an oxide-to-oxide
bonding process.

Step (D) is illustrated in FIG. 7D. A laser is used to shine
radiation through the sapphire substrate 724 of FIG. 7C and a
laser lift-off process is conducted. The sapphire substrate 724
of FIG. 7C is removed with the laser lift-off process. Further
details of the laser lift-off process are described in U.S. Pat.
No. 6,071,795 by Nathan W. Cheung, Timothy D. Sands and
William S. Wong (“Cheung”). A CMP process is conducted to
planarize the surface of the N confinement layer 727 after
laser lift-off of the sapphire substrate. Various elements in
FIG. 7D such as 728, 730, 732, 733, 734, 746, and 744 have
been previously described.

Step (E) is illustrated in FIG. 7E. Various elements in FIG. 7E
such as 728, 730, 732, 733,734,746, 727, and 744 have been
previously described. An ITO layer 748 is deposited atop the
N confinement layer 727.
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Step (F) is illustrated in FIG. 7F. The green LED wafer 738 is
flipped and bonded atop the structure shown in FIG. 7E using
ITO-ITO bonding of layers 722 and 748. Various elements in
FIG. 7F such as 728, 730, 732, 733, 734,746, 727, 748, 722,
721, 720, 718, 716, 714, 712 and 744 have been previously
described.
Step (QG) is illustrated in FIG. 7G. A laser is used to shine
radiation through the sapphire substrate 712 of FIG. 7F and a
laser lift-off process is conducted. The sapphire substrate 712
of FIG. 7F is removed with the laser lift-off process. A CMP
process is conducted to planarize the surface of the N-type
confinement layer 715 after laser lift-off of the sapphire sub-
strate. Various elements in FIG. 7G such as 728, 730, 732,
733, 734, 746, 727, 748, 722, 721, 720, 718, 716, and 744
have been previously described.
Step (H) is illustrated in FIG. 7H. An ITO layer 752 is depos-
ited atop the N-type confinement layer 715. Various elements
in FIG. 7H such as 728, 730, 732, 733, 734, 746, 727, 748,
722,721, 720, 718, 716, 715, and 744 have been previously
described.
Step (1) is illustrated in FIG. 71. The red LED watfer 736 from
FIG. 7A is flipped and bonded atop the structure shown in
FIG. 7H using ITO-ITO bonding of layers 710 and 752.
Various elements in FIG. 71 such as 728, 730, 732, 733, 734,
746, 727,748, 722, 721, 720, 718, 716, 715, 752, 710, 709,
708, 706, 704, 702, and 744 have been previously described.
Step (J) is illustrated in FIG. 7]. The GaAs substrate 702 from
FIG. 71 is removed using etch and/or CMP. Following this
etch and/or CMP process, the N-type confinement layer 704
of FIG. 71 is planarized using CMP to form the N-type con-
finement layer 705. Various elements in FIG. 7] such as 728,
730, 732, 733, 734, 746, 727, 748, 722, 721, 720, 718, 716,
715,752, 710, 709, 708, 706, and 744 have been previously
described.
Step (K) is illustrated in FIG. 7K. An ITO layer 756 is depos-
ited atop the N confinement layer 705 of FIG. 7J. Various
elements in FIG. 7K such as 728, 730, 732, 733, 734, 746,
727,748, 722,721, 720, 718, 716, 715, 752, 710, 709, 708,
706, 705, and 744 have been previously described.
Step (L) is illustrated in FIG. 7L. Using flip-chip packaging
procedures similar to those described in FIG. 4A-FIG. 45, the
RGB LED stack shown in FIG. 7K is attached to a silicon
sub-mount 768. 758 indicates a reflecting material, 764 is a
nickel layer, 766 represents solder bumps, 762 is an alumi-
num via, and 772 is either an oxide layer or an air gap. Various
elements in FIG. 7L such as 728, 730, 732, 733, 734, 746,
727,748, 722,721, 720, 718, 716, 715, 752, 710, 709, 708,
706, 705, and 756 have been described previously. The con-
figuration of optional reflectors 733, 721 and 709 determines
light output coming from the LED. The preferred embodi-
ment of this invention may not have a reflector 733, but may
have the reflector 721 (reflecting only the blue light produced
by multiple quantum well 728) and the reflector 709 (reflect-
ing only the green light produced by multiple quantum well
716).

FIGS. 8A-B show an embodiment of this invention, where
stacked RGB LEDs are formed from a wafer having red LED
layers and another wafer having both green and blue LED
layers. Therefore, a smart layer transfer process is used to
form the stacked RGB LED. FIG. 8A shows that a red LED
wafer 836 and another wafer called a blue-green LED wafer
836 are used. The red LED wafer 836 is constructed on a
GaAs substrate 802 and includes a N-type confinement layer
804, a multiple quantum well (MQW) 806, a P-type confine-
ment layer 808, an optional reflector 809 and an ITO current
spreader 810. Examples of materials used to construct these
layers, include, but are not limited to, doped AllnGaP for the
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N-type confinement layer 804 and P-type confinement layer
808, the multiple quantum well layer 806 could be of Alln-
GaP and GalnP and the optional reflector 809 could be a
distributed Bragg Reflector. A double heterostructure con-
figuration or single quantum well configuration could be used
instead of a multiple quantum well configuration. Various
other material types and configurations could be used for
constructing the red LEDs for this process. The blue-green
LED wafer 838 is constructed on a sapphire or bulk GaN or
SiC substrate 812 (or some other transparent substrate) and
includes a N-type confinement layer 814, a green multiple
quantum well (MQW) 816, a blue multiple quantum well
817, a buffer layer 818, a P-type confinement layer 820, an
optional reflector 821, and an ITO current spreader 822.
Examples of materials used to construct the blue-green LED
wafers, include, but are not limited to, doped GaN for the
N-type and P-type confinement layers 814, 820, AlGaN for
the buffer layer 818 and InGaN/GaN for the multiple quan-
tum wells 816 and 817. The optional reflector 821 could be a
distributed Bragg Reflector or some other type of reflector.
The optional reflector 821 could alternatively be built
between the N-type confinement layer 814 or below it, and
this is valid for all LEDs discussed in the patent application.
Various other material types and configurations could be used
for constructing blue-green LED wafers for this process.
Using smart layer transfer procedures similar to those shown
in FIG. 4-FIG. 7, the stacked RGB LED structure shown in
FIG. 8B is constructed. Various elements in FIG. 8B such as
806, 808, 809, 810, 816, 817, 818, 820, 821, and 822 have
been described previously. 846 is a glass substrate, 844 is an
ITO layer, 815 is a N-type confinement layer for a blue-green
LED, 852 is an ITO layer, 805 is a N-type confinement layer
forared LED, 856 is an ITO layer, 858 is a reflecting material
such as, for example, silver or aluminum, 864 is a nickel layer,
866 is a solder layer, 862 is a contact layer constructed of
aluminum or some other metal, 860 may be preferably an air
gap but could be an oxide layer and 868 is a silicon sub-
mount. The configuration of optional reflectors 821 and 809
determines light produced by the LED. For the configuration
shown in FIG. 8B, the preferred embodiment may not have
the optional reflector 821 and may have the optional reflector
809 reflecting light produced by the blue and green quantum
wells 816 and 817.

FIG. 9 illustrates an embodiment of this invention, where
stacked RGB LEDs are formed with control and driver cir-
cuits for the LED built on the silicon sub-mount. Procedures
similar to those described in FIG. 4-FIG. 7 are utilized for
constructing and packaging the LED. Control and driver cir-
cuits are integrated on the silicon sub-mount 968 and can be
used for controlling and driving the stacked RGB LED. 946 is
a glass substrate, 944 and 934 are ITO layers, 933 is an
optional reflector, 932 is a P-type confinement layer for a blue
LED, 930 is a buffer layer for a blue LED, 928 is a blue
multiple quantum well, 927 is a N-type confinement layer for
a blue LED, 948 and 922 are ITO layers, 921 is an optional
reflector, 920 is a P-type confinement layer for a green LED,
918 is a buffer layer for a green LED, 916 is a multiple
quantum well for a green LED, 915 is a N-type confinement
layer for a green LED, 952 and 910 are ITO layers, 909 is a
reflector, 908 is a P-type confinement layer forared LED, 906
is a red multiple quantum well, 905 is a N-type confinement
layer for a red LED, 956 is an ITO layer, 958 is a reflecting
layer such as aluminum or silver, 962 is a metal via con-
structed, for example, out of aluminum, 960 is an air-gap or an
oxide layer, 964 is a nickel layer, and 966 is a solder bump.

FIG. 10 illustrates an embodiment of this invention, where
stacked RGB LEDs are formed with control and driver cir-
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cuits as well as image sensors for the LED built on the silicon
sub-mount 1068. Image sensors essentially monitor the light
coming out of the LED and tune the voltage and current given
by control and driver circuits such that light output of the LED
is the right color and intensity. 1046 is a glass substrate, 1044
and 1034 are ITO layers, 1033 is an optional reflector, 1032 is
a P-type confinement layer for a blue LED, 1030 is a buffer
layer for a blue LED, 1028 is a blue multiple quantum well,
1027 is a N-type confinement layer for a blue LED, 1048 and
1022 are ITO layers, 1021 is an optional reflector, 1020 is a
P-type confinement layer for a green LED, 1018 is a buffer
layer for a green LED, 1016 is a multiple quantum well for a
green LED, 1015 is a N-type confinement layer for a green
LED, 1052 and 1010 are ITO layers, 1009 is a reflector, 1008
is a P-type confinement layer for a red LED, 1006 is a red
multiple quantum well, 1005 is a N-type confinement layer
forared LED, 1056 is an ITO layer, 1058 is a reflecting layer
such as aluminum or silver, 1062 is a metal via constructed for
example out of aluminum, an air-gap or an oxide layer
between silicon sub-mount 1068 and reflecting layer 1058,
1064 is a nickel layer and 1066 is a solder bump. The via hole
1074 helps transfer light produced by the blue multiple quan-
tum well 1028 reach an image sensor on the silicon sub-
mount 1068. The via hole 1072 helps transfer light produced
by the green multiple quantum well 1016 to an image sensor
on the silicon sub-mount 1068. The via hole 1070 helps
transfer light produced by the red multiple quantum well
1006 reach an image sensor on the silicon sub-mount 1068.
By sampling the light produced by each of the quantum wells
on the LED, voltage and current drive levels to different
terminals of the LED can be determined. Color tunability,
temperature compensation, better color stability, and many
other features can be obtained with this scheme. Furthermore,
circuits to communicate wirelessly with the LED can be
constructed on the silicon sub-mount. Light output of the
LED can be modulated by a signal from the user delivered
wirelessly to the light.

While three LED layers, namely, red, green, and blue, are
shown as stacked in various embodiments of this invention, it
will be clear to one skilled in the art based on the present
disclosure that more than three LED layers can also be
stacked. For example, red, green, blue and yellow LED layers
can be stacked.

The embodiments of this invention described in FIG.
4-FIG. 10 share a few common features. They have multiple
stacked (or overlying) layers, they are constructed using
smart layer transfer techniques and at least one of the stacked
layers has a thickness less than 50 microns. When cleave is
done using ion-cut, substrate layers that are removed using
cleave can be reused after a process flow that often includes a
CMP.

FIGS. 11A-F show a prior art illustration of phosphor-
coated LEDs (pcLEDs) constructed with ion-cut processes.
The process begins in FIG. 11A with a bulk-GaN substrate
1102, and an oxide layer 1104 is deposited atop it. The oxide
layer 1104 is an oxide compatible with GaN. FIG. 11B
depicts hydrogen being implanted into the structure shown in
FIG. 11A at a certain depth (for ion-cut purposes). 1102 and
1104 have been described previously with respect to FIG.
11A. Dotted lines 1106 indicate the plane of hydrogen ions.
Alternatively, helium can be implanted instead of hydrogen or
hydrogen and helium can be co-implanted. FIG. 11C shows a
silicon wafer 1108 with an oxide layer 1110 atop it. The
structure shown in FIG. 11B is flipped and bonded atop the
structure shown in FIG. 11C using oxide-to-oxide bonding of
layers 1104 and 1110. This is depicted in FIG. 11D. 1108,
1110 and 1106 have been described previously. FIG. 11E
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shows the next step in the process. Using an anneal, a cleave
is conducted at the plane of hydrogen atoms 1106 shown in
FIG. 11D, and a CMP is done to form GaN layer 1112. 1104,
1110 and 1108 have been described previously. FIG. 11F
shows the following step in the process. A blue LED 1114 is
grown epitaxially above the GaN layer 1112. 1104, 1108 and
1110 have been described previously. A phosphor layer can
be coated atop the blue LED 1114 to form a white phosphor
coated LED.

There may be some severe challenges with the prior art
process shown in FIGS. 11A-F. The thermal expansion coef-
ficients for GaN layers 1112 in FIG. 11F are very different
from that for silicon layers 1108. This difference can cause
cracks and defects while growing the blue LED layer 1114 at
high temperatures (>600° C.), which usually occurs. These
cracks and defects, in turn, cause bad efficiency and can in
turn cause the phosphor coated LED process in FIG. 11A-F to
be difficult to manufacture. Furthermore, an anneal
(typically >400° C.) is typically used in FIG. 11E to cleave the
bulk GaN layers. This can again cause issues with mismatch
of thermal expansion co-efficients and cause cracking and
defects.

FIGS. 12A-F describe an embodiment of this invention,
where phosphor coated LEDs are formed with an ion-cut
process (i.e. a smart layer transfer process). It minimizes the
problem with mismatch of thermal expansion co-efficients
that is inherent to the process described in FIGS. 11A-F. This
process could include several steps as described in the fol-
lowing sequence:

Step (A): FIG. 12A illustrates this step. A blue LED wafer is
constructed on a bulk-GaN substrate 1216. For discussions
within this document, the bulk-GaN substrate could be semi-
polar or non-polar or polar. The blue LED wafer includes a
N-type confinement layer 1214, a multiple quantum well
(MQW) 1212, abufferlayer 1210, a P-type confinement layer
1208, an optional reflector 1204 and an ITO current spreader
1206. Examples of materials used to construct these blue
LED layers, include, but are not limited to, doped GaN for the
N-type and P-type confinement layers 1214 and 1208, AlGaN
for the buffer layer 1210 and InGaN/GaN for the multiple
quantum wells 1212. The optional reflector 1204 could be
distributed Bragg Reflector, an Aluminum or silver layer or
some other type of reflectors. A silicon dioxide layer 1202 is
deposited atop the optional reflector 1204.

Step (B): FIG. 12B illustrates this step. The blue LED wafer
described in FIG. 12A has hydrogen implanted into it at a
certain depth. The dotted lines 1218 depict the hydrogen
implant. Alternatively, helium can be implanted. Various ele-
ments in FIG. 12B such as 1216, 1214, 1212, 1210, 1208,
1206, 1204, and 1202 have been described previously.

Step (C): FIG. 12C illustrates this step. A wafer 1220, pref-
erably of silicon, having the same wafer size as the structure
in FIG. 12B is taken and an oxide layer 1222 is grown or
deposited atop it.

Step (D): FIG. 12D illustrates this step. The structure shown
in FIG. 12B is flipped and bonded atop the structure shown in
FIG. 12C using oxide-to-oxide bonding of layers 1202 and
1222. Various elements in FIG. 12D such as 1216, 1214,
1212, 1210, 1208, 1206, 1204, 1220, 1222, 1218 and 1202
have been described previously.

Step (E): FIG. 12E illustrates this step. The structure shown in
FIG. 12D is cleaved at its hydrogen plane 1218. A mechanical
cleave may be preferably used for this process. However, an
anneal could be used as well. The mechanical cleave process
typically happens at room temperatures, and therefore can
avoid issues with thermal expansion co-efficients mismatch.
After cleave, the wafer is planarized and the N-type confine-
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ment layer 1215 is formed. Various elements in FIG. 12E such
as 1212, 1210, 1208, 1206, 1204, 1220, 1222, and 1202 have
beendescribed previously. The bulk GaN substrate 1216 from
FIG. 12D that has been cleaved away can be reused. This may
be attractive from a cost perspective, since bulk GaN sub-
strates are quite costly.

Step (F): This is illustrated in FIG. 12F. An ITO layer 1224 is
deposited atop the structure shown in FIG. 12E. Various ele-
ments in FIG. 12F such as 1212, 1210, 1208, 1206, 1204,
1220, 1222, 1215, 1224, and 1202 have been described pre-
viously.

A phosphor coating can be applied over the structure shown in
FIG. 12F to produce a phosphor-coated LED. The advantage
of'the process shown in FIG. 12A-F over the process shown in
FIG. 11A-F may include low process temperatures, even less
than 250° C. Therefore, issues with thermal expansion co-
efficients mismatch are substantially mitigated. While the
description in FIG. 12A-F is for a LED, many other devices,
such as, for example, laser diodes, high power transistors,
high frequencies transistors, special transmitter circuits and
many other devices can be constructed, according to a similar
description, with bulk-GaN.

In the description of FIG. 12A-F, silicon is described as a
preferred material for the substrate 1220. Silicon has a co-
efficient of thermal expansion of about 2.6 ppm/° C., while
bulk-GaN, which is the substrate 1216 on which the LED is
epitaxially grown, has a co-efficient of thermal expansion of
5.6 ppm/° C. In an alternate embodiment of this invention, the
substrate 1220 used in FIG. 12A-F could be constructed of a
material that has a co-efficient of thermal expansion (CTE)
fairly close to bulk-GaN. Preferably, the CTE of the substrate
1220 could be any value in between (the CTE of bulk GaN -2
pp/° C.) and (the CTE of bulk GaN+2 ppm/° C.). Examples
of materials that could be used for the substrate 1220 could
include, but are not limited to, Germanium, that has a CTE of
5.8 ppm/° C., and various ceramic materials. Having CTE for
the substrate 1220 close to bulk-GaN prevents defects and
cracks being formed due to issues with mismatch of CTE,
even if higher temperature processing (>250° C.) is used.

In an alternative embodiment of this invention, the flow in
FIG. 11A-F can be used with the substrate 1108 havinga CTE
fairly close to the CTE of bulk GaN. Preferably, the CTE of
the substrate 1108 could be any value in between (the CTE of
bulk GaN-2 ppm/°® C.) and (the CTE of bulk GaN+2 ppm/°
C.). Examples of materials that could be used for the substrate
1108 could include, but are not limited to, Germanium, that
has a CTE of 5.8 ppm/° C., and various ceramic materials.
Nulmager Technology:

Layer transfer technology can also be advantageously uti-
lized for constructing image sensors. Image sensors typically
include photodetectors on each pixel to convert light energy
to electrical signals. These electrical signals are sensed,
amplified and stored as digital signals using transistor cir-
cuits.

FIG. 13 shows prior art where through-silicon via (TSV)
technology is utilized to connect photodetectors 1302 on one
layer (tier) of silicon to transistor read-out circuits 1304 on
another layer (tier) of silicon. Unfortunately, pixel sizes in
today’s image sensors are 1.1 pm or so. It is difficult to get
through-silicon vias with size <1 pm due to alignment prob-
lems, leading to a diminished ability to utilize through-silicon
via technology for future image sensors. In FIG. 13, essen-
tially, transistors can be made for read-out circuits in one
wafer, photodetectors can be made on another wafer, and then
these wafers can be bonded together with connections made
with through-silicon vias.
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FIGS. 14-21 describe some embodiments of this invention,
where photodetector and read-out circuits are stacked mono-
lithically with layer transfer. FIG. 14 shows two configura-
tions for stacking photodetectors and read-out circuits. In one
configuration, denoted as 1402, a photodetector layer 1406
may be formed above read-out circuit layer 1408 with con-
nections 1404 between these two layers. In another configu-
ration, denoted as 1410, photodetectors 1412 may have read-
out circuits 1414 formed above them, with connections 1416
between these two layers.

FIGS. 15A-H describe an embodiment of this invention,
where an image sensor includes a photodetector layer formed
atop a read-out circuit layer using layer transfer. In this docu-
ment, the photodetector layer is denoted as a p-n junction
layer. However, any type of photodetector layer, such as a pin
layer or some other type of photodetector can be used. The
thickness of the photodetector layer is typically less than 5
um. The process of forming the image sensor could include
several steps that occur in a sequence from Step (A) to Step
(H). Many of these steps share common characteristics, fea-
tures, modes of operation, etc. When identical reference num-
bers are used in different drawing figures, they are used to
indicate analogous, similar or identical structures to enhance
the understanding of the present invention by clarifying the
relationships between the structures and embodiments pre-
sented in the various diagrams—particularly in relating
analogous, similar or identical functionality to different
physical structures.

Step (A) is illustrated in FIG. 15A. A silicon wafer 1502 may
be taken and a n+ Silicon layer 1504 may be formed by ion
implantion. Following this, n layer 1506, p layer 1508 and p+
layer 1510 may be formed epitaxially. It will be appreciated
by one skilled in the art based on the present disclosure that
there are various other procedures to form the structure shown
in FIG. 15A. An anneal may then be performed to activate
dopants in the various layers.

Step (B) is illustrated in FIG. 15B. Various elements in FIG.
15B such as 1502, 1504, 1506, 1508 and 1510 have been
described previously. Using lithography and etch, a via may
be etched into the structure shown in FIG. 15A, then may be
filled with oxide and then polished with CMP. The regions
formed are the oxide filled via 1512 and the oxide layer 1514.
The oxide filled via 1512 may also be referred to as an oxide
via or an oxide window region or oxide aperture. A cross-
section of the structure is indicated by 1598 and a top view is
indicated by 1596. 1516 indicates alignment marks and the
oxide filled via 1512 may be formed in place of some of the
alignment marks printed on the wafer.

Step (C) is illustrated in FIG. 15C. Various elements in FIG.
15C such as 1502, 1504, 1506, 1508, 1510, 1512, 1514, and
1516 have been described previously. Hydrogen may be
implanted into the structure indicated in FIG. 15B at a certain
depth indicated by dotted lines 1518 of FIG. 15C. Alterna-
tively, Helium can be used as the implanted species. A cross-
sectional view 1594 and a top view 1592 are shown.

Step (D) is illustrated in FIG. 15D. A silicon wafer 1520 with
read-out circuits (which includes wiring) processed on it is
taken, and an oxide layer 1522 may be deposited above it.
Step (E) is illustrated in FIG. 15E. The structure shown in
FIG. 15C is flipped and bonded to the structure shown in FIG.
15D using oxide-to-oxide bonding of oxide layers 1514 and
1522. During this bonding procedure, alignment may be done
such that oxide vias 1512 (shown in the top view 1526 of the
photodetector wafer) are above alignment marks (such as
1530) on the top view 1528 of the read-out circuit wafer. A
cross-sectional view of the structure is shown with 1524.
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Various elements in FIG. 15E such as 1502, 1504, 1506,
1508, 1510, 1512, 1514, 1516, 1518, 1520, and 1522 have
been described previously.
Step (F) is illustrated in FIG. 15F. The structure shown in FIG.
15E may be cleaved at its hydrogen plane 1518 preferably
using a mechanical process. Alternatively, an anneal could be
used for this purpose. A CMP process may be then done to
planarize the surface resulting in a final n+ silicon layer
indicated as 1534. 1525 depicts a cross-sectional view of the
structure after the cleave and CMP process. Various elements
in FIG. 15F such as 1506, 1508, 1510, 1512, 1514, 1516,
1520, 1526, 1530, 1528, 1530 and 1522 have been described
previously.
Step (G) is illustrated using FIG. 15G. Various elements in
FIG. 15G such as 1506, 1508, 1510, 1512, 1514, 1516, 1520,
1526, 1530, 1528, 1530, 1534 and 1522 have been described
previously. An oxide layer 1540 may be deposited. Connec-
tions between the photodetector and read-out circuit wafers
may be formed with metal 1538 and an insulator covering
1536. These connections may be formed well aligned to the
read-out circuit layer 1520 by aligning to alignment marks
1530 on the read-out circuit layer 1520 through oxide vias
1512. 1527 depicts a cross-sectional view of the structure.
Step (H) is illustrated in FIG. 15H. Connections are made to
the terminals of the photodetector and are indicated as 1542
and 1544. Various elements of FIG. 15H such as 1520, 1522,
1512,1514,1510,1508, 1506, 1534, 1536, 1538, 1540, 1542,
and 1544 have been described previously. Contacts and inter-
connects for connecting terminals of the photodetector to
read-out circuits may then be done, following which a pack-
aging process is conducted.

The thinner the transferred layer, the smaller the through
layer via (TLV) diameter obtainable, due to the potential
limitations of manufacturable via aspect ratios. Thus, the
transferred layer may be, for example, less than about 2
microns thick, less than about 1 micron thick, less than about
0.4 microns thick, less than about 200 nm thick, or less than
about 100 nm thick. The vertical connections, or Through
Layer Via (TLV) diameter may be less than about 400 nm, less
than about 200 nm, less than about 80 nm, less than about 40
nm, or less than about 20 nm. The thickness of the layer or
layers transferred according to some embodiments of the
present invention may be designed as such to match and
enable the best obtainable lithographic resolution capability
of the manufacturing process employed to create the through
layer vias or any other structures on the transferred layer or
layers.

In many of the embodiments of the invention, the layer or
layers transferred may be of a crystalline material, for
example, mono-crystalline silicon, and after layer transfer,
further processing, such as, for example, plasma/RIE or wet
etching, may be done on the layer or layers that may create
islands or mesas of the transferred layer or layers of crystal-
line material, for example, mono-crystalline silicon, the crys-
tal orientation of which has not changed. Thus, a mono-
crystalline layer or layers of a certain specific crystal
orientation may be layer transferred and then processed
whereby the resultant islands or mesas of mono-crystalline
silicon have the same crystal specific orientation as the layer
or layers before the processing. After this processing, the
resultant islands or mesas of crystalline material, for
example, mono-crystalline silicon, may be still referred to
herein as a layer, for example, mono-crystalline layer, layer of
mono-crystalline silicon, and so on

FIGS. 15A-G show a process where oxide vias may be used
to look through photodetector layers to observe alignment
marks on the read-out circuit wafer below it. However, if the
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thickness of the silicon on the photodetector layer is <100-
400 nm, the silicon wafer is thin enough that one can look
through it without requiring oxide vias. A process similar to
FIG. 15A-G where the silicon thickness for the photodetector
is <100-400 nm represents another embodiment of this inven-
tion. In that embodiment, oxide vias may not be constructed
and one could look right through the photodetector layer to
observe alignment marks of the read-out circuit layer. This
may help making well-aligned through-silicon connections
between various layers.

As mentioned previously, FIGS. 15A-G illustrate a process
where oxide vias constructed before layer transfer are used to
look through photodetector layers to observe alignment
marks on the read-out circuit wafer below it. However, an
alternative embodiment of this invention may involve con-
structing oxide vias after layer transfer. Essentially, after
layer transfer of structures without oxide vias, oxide vias
whose diameters are larger than the maximum misalignment
of the bonding/alignment scheme are formed. This order of
sequences may enable observation of alignment marks on the
bottom read-out circuit wafer by looking through the photo-
detector wafer.

While Silicon has been suggested as the material for the
photodetector layer of FIG. 15A-G, Germanium could be
used in an alternative embodiment. The advantage of Germa-
nium is that it is sensitive to infra-red wavelengths as well.
However, Germanium also suffers from high dark current.

While FIG. 15A-G described a single p-n junction as the
photodetector, it will be obvious to one skilled in the art based
on the present disclosure that multiple p-n junctions can be
formed one on top of each other, as described in “Color
Separation in an Active Pixel Cell Imaging Array Using a
Triple-Well Structure,” U.S. Pat. No. 5,965,875, 1999 by R.
Merrill and in “Trends in CMOS Image Sensor Technology
and Design,” International Electron Devices Meeting Digest
of Technical Papers, 2002 by A. El-Gamal. This concept
relies on the fact that different wavelengths of light penetrate
to different thicknesses of silicon, as described in FIG. 16. It
can be observed in FIG. 16 that near the surface 400 nm
wavelength light has much higher absorption per unit depth
than 450 nm-650 nm wavelength light. On the other hand, at
a depth of 0.5 um, 500 nm light has a higher absorption per
unit depth than 400 nm light. An advantage of'this approach is
that one does not require separate filters (and area) for green,
red and blue light; all these different colors/wavelengths of
light can be detected with different p-n junctions stacked atop
each other. So, the net area required for detecting three dif-
ferent colors of light is reduced, leading to an improvement of
resolution.

FIGS. 17A-B illustrate an embodiment of this invention,
where red, green, and blue photodetectors are stacked mono-
lithically atop read-out circuits using ion-cut technology (for
an image sensor). Therefore, a smart layer transfer technique
is utilized. FIG. 17 A shows the first step for constructing this
image sensor. 1724 shows a cross-sectional view of 1708, a
silicon wafer with read-out circuits constructed on it, above
which an oxide layer 1710 is deposited. 1726 shows the
cross-sectional view of another wafer which may include
silicon substrate 1712, a p+ Silicon layer 1714, a p Silicon
layer 1716, a n Silicon layer 1718, a n+ Silicon layer 1720,
and an oxide layer 1722. These layers may be formed using
procedures similar to those described in FIG. 15A-G. An
anneal may then be performed to activate dopants in various
layers. Hydrogen may be implanted in the wafer at a certain
depth depicted by 1798, shown as dashed line. FIG. 17B
shows the structure of the image sensor before contact for-
mation. Three layers of p+pnn+ silicon (each corresponding
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to a color band and similar to the one depicted in 1726 in F1G.
17A) are layer transferred sequentially atop the silicon wafer
with read-out circuits (depicted by 1724 in FIG. 17A). Three
different layer transfer steps may be used for this purpose.
Procedures for layer transfer and alignment for forming the
image sensor in FIG. 17B are similar to procedures used for
constructing the image sensor shown in FIGS. 15A-G. Each
of'the three layers of p+pnn+ silicon senses a different wave-
length of light. For example, blue light is detected by blue
photodetector 1702, green light is detected by green photo-
detector 1704, and red light is detected by red photodetector
1706. Contacts, metallization, packaging and other steps are
done to the structure shown in FIG. 17B to form an image
sensor. The oxides 1730 and 1732 could be either transparent
conducting oxides or silicon dioxide. Use of transparent con-
ducting oxides could allow fewer contacts to be formed.

FIG. 18A-B show another embodiment of this invention,
where red, green and blue photodetectors are stacked mono-
lithically atop read-out circuits using ion-cut technology (for
an image sensor) using a different configuration. Therefore, a
smart layer transfer technique is utilized. FIG. 18A shows the
first step for constructing this image sensor. 1824 shows a
cross-section of 1808, a silicon wafer with read-out circuits
constructed on it, above which an oxide layer 1810 is depos-
ited. 1826 shows the cross-sectional view of another wafer
which has silicon substrate 1812, a p+ Silicon layer 1814, a p
Silicon layer 1816, a n Silicon layer 1818, a p Silicon layer
1820, a n Silicon layer 1822, a n+ Silicon layer 1828 and an
oxide layer 1830. These layers may be formed using proce-
dures similar to those described in FIG. 15A-G. An anneal
may then be performed to activate dopants in various layers.
Hydrogen may implanted in the wafer at a certain depth
depicted by 1898, shown as dashed line. FIG. 18B shows the
structure of the image sensor before contact formation. A
layer of p+pnpnn+ (similar to the one depicted in 1826 in FIG.
18A) is layer transferred sequentially atop the silicon wafer
with read-out circuits (depicted by 1824 in FIG. 18A). Pro-
cedures for layer transfer and alignment for forming the
image sensor in FIG. 18B are similar to procedures used for
constructing the image sensor shown in FIG. 15A-G. Con-
tacts, metallization, packaging and other steps are done to the
structure shown in FIG. 18B to form an image sensor. Three
different pn junctions, denoted by 1802, 1804 and 1806 may
be formed in the image sensor to detect different wavelengths
of light.

FIGS. 19A-B show another embodiment of this invention,
where an image sensor that can detect both visible and infra-
red light is depicted. Such image sensors could be useful for
taking photographs in both day and night settings (without
necessarily requiring a flash). This embodiment makes use of
the fact that while silicon is not sensitive to infra-red light,
other materials such as Germanium and Indium Gallium Ars-
enide are. A smart layer transfer technique is utilized for this
embodiment. FIG. 19A shows the first step for constructing
this image sensor. 1902 shows a cross-sectional view of 1904,
a silicon wafer with read-out circuits constructed on it, above
which an oxide layer 1906 is deposited. 1908 shows the
cross-sectional view of another wafer which has silicon 1910,
a p+ Silicon layer 1912, a p Silicon layer 1914, a n Silicon
layer 1916, a n+ Silicon layer 1918 and an oxide layer 1720.
These layers may be formed using procedures similar to those
described in FIGS. 15A-G. An anneal may then be performed
to activate dopants in various layers. Hydrogen may be
implanted in the wafer at a certain depth depicted by 1998,
shown as dashed line. 1922 shows the cross-sectional view of
another wafer which has a substrate 1924, an optional buffer
layer 1936, a p+ Germanium layer 1926, a p Germanium layer
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1928, an Germanium layer 1930, a n+ Germanium layer 1932
and an oxide layer 1934. These layers may be formed using
procedures similar to those described in FIGS. 15A-G. An
anneal may then be performed to activate dopants in various
layers. Hydrogen may be implanted in the wafer at a certain
depth depicted by 1996, shown as dashed line. Examples of
materials used for the structure 1922 may include a Germa-
nium substrate for 1924, no buffer layer and multiple Germa-
nium layers. Alternatively, an Indium Phosphide substrate
could be used for 1924 when the layers 1926, 1924, 1922 and
1920 are constructed of InGaAs instead of Germanium. FIG.
19B shows the structure of this embodiment of the invention
before contacts and metallization are constructed. The
p+pnn+ Germanium layers of structure 1922 of FIG. 19A are
layer transferred atop the read-out circuit layer of structure
1902. This is done using smart layer transfer procedures
similar to those described in respect to FIG. 15A-G. Follow-
ing this, multiple p+pnn+ layers similar to those used in
structure 1908 may be layer transferred atop the read-out
circuit layer and Germanium photodetector layer (using three
different layer transfer steps). This, again, is done using pro-
cedures similar to those described in FIGS. 15A-G. The struc-
ture shown in FIG. 19B therefore has a layer of read-out
circuits 1904, above which an infra-red photodetector 1944, a
red photodetector 1942, a green photodetector 1940 and a
blue photodetector 1938 are present. Procedures for layer
transfer and alignment for forming the image sensor in FIG.
19B are similar to procedures used for constructing the image
sensor shown in FIG. 15A-G. Each of the p+pnn+ layers
senses a different wavelength of light. Contacts, metalliza-
tion, packaging and other steps are done to the structure
shown in FIG. 19B to form an image sensor. The oxides 1946,
1948, and 1950 could be either transparent conducting oxides
or silicon dioxide. Use of transparent conducting oxides
could allow fewer contacts to be formed.

FIG. 20A describes another embodiment of this invention,
where polarization of incoming light can be detected. The p-n
junction photodetector 2006 detects light that has passed
through a wire grid polarizer 2004. Details of wire grid polar-
izers are described in “Fabrication of a 50 nm half-pitch wire
grid polarizer using nanoimprint lithography.” Nanotechnol-
ogy 16 (9): 1874-1877, 2005 by Ahn, S. W.; K. D. Lee, I. S.
Kim, S. H. Kim, J. D. Park, S. H. Lee, P. W. Yoon. The wire
grid polarizer 2004 absorbs one plane of polarization of the
incident light, and may enable detection of other planes of
polarization by the p-n junction photodetector 2006. The p-n
junction photodetector 2002 detects all planes of polarization
for the incident light, while 2006 detects the planes of polar-
ization that are not absorbed by the wire grid polarizer 2004.
One can thereby determine polarization information from
incoming light by combining results from photodetectors
2002 and 2006. The device described in FIG. 20A can be
fabricated by first constructing a silicon wafer with transistor
circuits 2008, following which the p-n junction photodetector
2006 can be constructed with the low-temperature layer trans-
fer techniques described in FIG. 15A-G. Following this con-
struction of p-n junction photodetector 2006, the wire grid
polarizer 2004 may be constructed using standard integrated
circuit metallization methods. The photodetector 2002 can
then be constructed by another low-temperature layer transfer
process as described in FIG. 15A-G. One skilled in the art,
based on the present disclosure, can appreciate that low-
temperature layer transfer techniques are critical to build this
device, since semiconductor layers in 2002 are built atop
metallization layers required for the wire grid polarizer 2004.
Thickness of the photodetector layers 2002 and 2006 may be
preferably less than 5 um. An example with polarization
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detection where the photodetector has other pre-processed
optical interaction layers (such as a wire grid polarizer) has
been described herein. However, other devices for determin-
ing parameters of incoming light (such as phase) may be
constructed with layer transfer techniques.

One of the common issues with taking photographs with
image sensors is that in scenes with both bright and dark
areas, while the exposure duration or shutter time could be set
high enough to get enough photons in the dark areas to reduce
noise, picture quality in bright areas degrades due to satura-
tion of the photodetectors’ characteristics. This issue is with
the dynamic range of the image sensor, i.e. there is a tradeoff
between picture quality in dark and bright areas. FIG. 20B
shows an embodiment of this invention, where higher
dynamic range can be reached. According the embodiment of
FIG. 20B, two layers of photodetectors 2032 and 2040, could
be stacked atop a read-out circuit layer 2028. 2026 is a sche-
matic of the architecture. Connections 2030 run between the
photodetector layers 2032 and 2040 and the read-out circuit
layer 2028. 2024 are reflective metal lines that block light
from reaching part of the bottom photodetector layer 2032.
2042 is a top view of the photodetector layer 2040. Photode-
tectors 2036 could be present, with isolation regions 2038
between them. 2044 is a top view of the photodetector layer
2032 and the metal lines 2024. Photodetectors 2048 are
present, with isolation regions 2046 between them. A portion
of'the photodetectors 2048 can be seen to be blocked by metal
lines 2024. Brighter portions of an image can be captured
with photodetectors 2048, while darker portions of an image
can be captured with photodetectors 2036. The metal lines
2024 positioned in the stack may substantially reduce the
number of photons (from brighter portions of the image)
reaching the bottom photodetectors 2048. This reduction in
number of photons reaching the bottom photodetectors 2048
helps keep the dynamic range high. Read-out signals coming
from both dark and bright portions of the photodetectors
could be used to get the final picture from the image sensor.

FIG. 21 illustrates another embodiment of this invention
where a read-out circuit layer 2104 is monolithically stacked
above the photodetector layer 2102 at a temperature approxi-
mately less than 400° C. Connections 2106 are formed
between these two layers. Procedures for stacking high-qual-
ity monocrystalline transistor circuits and wires at tempera-
tures approximately less than 400° C. using layer transfer are
described in pending U.S. patent application Ser. No. 12/901,
890 by the inventors of this patent application, the content of
which is incorporated by reference. The stacked layers could
use junction-less transistors, recessed channel transistors,
repeating layouts or other devices/techniques described in
U.S. patent application Ser. No. 12/901,890 the content of
which is incorporated by reference. The embodiments of this
invention described in FIG. 14-FIG. 21 may share a few
common features. They can have multiple stacked (or over-
lying) layers, use one or more photodetector layers (terms
photodetector layers and image sensor layers are often used
interchangeably), thickness of at least one of the stacked
layers is less than 5 microns and construction can be done
with smart layer transfer techniques and stacking is done at
temperatures approximately less than 450° C.

NuDisplay Technology:

In displays and microdisplays (small size displays where
optical magnification is needed), transistors need to be
formed on glass or plastic substrates. These substrates typi-
cally cannot withstand high process temperatures (e.g., >400°
C.). Layer transfer can be advantageously used for construct-
ing displays and microdisplays as well, since it may enable
transistors to be processed on these substrates at <400° C.
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Various embodiments of transistors constructed on glass sub-
strates are described in this patent application. These transis-
tors constructed on glass substrates could form part of liquid
crystal displays (LCDs) or other types of displays. It will be
clear to those skilled in the art based on the present disclosure
that these techniques can also be applied to plastic substrates.
FIGS. 22A-G describe a process for forming recessed
channel single crystal (or monocrystalline) transistors on
glass substrates at a temperature approximately less than 400°
C. for display and microdisplay applications. This process
could include several steps that occur in a sequence from Step
(A) to Step (G). Many of these steps share common charac-
teristics, features, modes of operation, etc. When identical
reference numbers are used in different drawing figures, they
are used to indicate analogous, similar or identical structures
to enhance the understanding of the present invention by
clarifying the relationships between the structures and
embodiments presented in the various diagrams—particu-
larly in relating analogous, similar or identical functionality
to different physical structures.
Step (A) is illustrated in FIG. 22A. A silicon wafer 2202 is
taken and a n+ region 2204 is formed by ion implantation.
Following this formation, a layer of p- Silicon 2206 is epi-
taxially grown. An oxide layer 2210 is then deposited. Fol-
lowing this deposition, an anneal is performed to activate
dopants in various layers. It will be clear to one skilled in the
art based on the present disclosure that various other proce-
dures can be used to get the structure shown in FIG. 22A.
Step (B) is illustrated in FIG. 22B. Hydrogen is implanted
into the structure shown in FIG. 22A at a certain depth indi-
cated by 2212. Alternatively, Helium can be used for this
purpose. Various elements in FIG. 22B, such as 2202, 2204,
2006, and 2210 have been described previously.
Step (C) is illustrated in FIG. 22C. A glass substrate 2214 is
taken and a silicon oxide layer 2216 is deposited atop it at
compatible temperatures.
Step (D) is illustrated in FIG. 22D. Various elements in FIG.
22D, such as 2202, 2204, 2206, 2210, 2214, and 2216 have
been described previously. The structure shown in FIG. 22B
is flipped and bonded to the structure shown in FIG. 22C
using oxide-to-oxide bonding of layers 2210 and 2216.
Step (E) is illustrated in FIG. 22E. The structure shown in
FIG. 22D is cleaved at the hydrogen plane 2212 of FIG. 22D.
A CMP is then done to planarize the surface and yield the n+
Si layer 2218. Various other elements in FIG. 22E, such as
2214, 2216, 2210 and 2206 have been described previously.
Step (F) is illustrated in FIG. 22F. Various elements in FIG.
22F such as 2214, 2216, 2210, and 2206 have been described
previously. An oxide layer 2220 is formed using a shallow
trench isolation (STI) process. This helps isolate transistors.
Step (G) is illustrated in FIG. 22G. Various elements in FIG.
22G such as 2210, 2216, 2220 and 2214 have been described
previously. Using etch techniques, part of the n+ Silicon layer
from FIG. 22F and optionally p- Silicon layer from FIG. 22F
are etched. After this a thin gate dielectric is deposited, after
which a gate dielectrode is deposited. The gate dielectric and
gate electrode are then polished away to form the gate dielec-
tric layer 2224 and gate electrode layer 2222. The n+ Silicon
layers 2228 and 2226 form the source and drain regions of the
transistors while the p- Silicon region after this step is indi-
cated by 2230. Contacts and other parts of the display/micro-
display are then fabricated. It can be observed that during the
whole process, the glass substrate substantially always expe-
riences temperatures less than 400° C., or even lower. This is
because the crystalline silicon can be transferred atop the
glass substrate at a temperature less than 400° C., and dopants
are pre-activated before layer transfer to glass.
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FIG. 23A-H describes a process of forming both nMOS
and pMOS transistors with single-crystal silicon on a glass
substrate at temperatures less than 400° C., and even lower.
Ton-cut technology (which is a smart layer transfer technol-
ogy) is used. While the process flow described is shown for
both nMOS and pMOS on a glass substrate, it could also be
used for just constructing nMOS devices or for just construct-
ing pMOS devices. This process could include several steps
that occur in a sequence from Step (A) to Step (H). Many of
these steps share common characteristics, features, modes of
operation, etc. When identical reference numbers are used in
different drawing figures, they are used to indicate analogous,
similar or identical structures to enhance the understanding of
the present invention by clarifying the relationships between
the structures and embodiments presented in the various dia-
grams—particularly in relating analogous, similar or identi-
cal functionality to different physical structures.
Step (A) is illustrated in FIG. 23A. A p- Silicon wafer 2302
is taken and a n well 2304 is formed on the p- Silicon wafer
2302. Various additional implants to optimize dopant profiles
can also be done. Following this formation, an isolation pro-
cess is conducted to form isolation regions 2306. A dummy
gate dielectric 2310 made of silicon dioxide and a dummy
gate electrode 2308 made of polysilicon are constructed.
Step (B) is illustrated in FIG. 23B. Various elements of FIG.
23B, such as 2302, 2304, 2306, 2308 and 2310 have been
described previously. Implants are done to form source-drain
regions 2312 and 2314 for both nMOS and pMOS transistors.
A rapid thermal anneal (RTA) is then done to activate dopants.
Alternatively, a spike anneal or a laser anneal could be done.
Step (C) is illustrated in FIG. 23C. Various elements of FIG.
23C such as 2302, 2304, 2306, 2308, 2310, 2312 and 2314
have been described previously. An oxide layer 2316 is
deposited and planarized with CMP.
Step (D) is described in FIG. 23D. Various elements of FIG.
23D such as 2302, 2304, 2306, 2308, 2310, 2312, 2314, and
2316 have been described previously. Hydrogen is implanted
into the wafer at a certain depth indicated by 2318. Alterna-
tively, helium can be implanted.
Step (E) is illustrated in FIG. 23E. Various elements of FIG.
23E suchas 2302, 2304, 2306, 2308, 2310, 2312, 2314, 2316,
and 2318 have been described previously. Using a temporary
bonding adhesive, the oxide layer is bonded to a temporary
carrier wafer 2320. An example ofa temporary bonding adhe-
sive is a polyimide that can be removed by shining a laser. An
example of a temporary carrier wafer is glass.
Step (F) is described in FIG. 23F. The structure shown in FIG.
23E is cleaved at the hydrogen plane using a mechanical
force. Alternatively, an anneal could be used. Following this
cleave, a CMP is done to planarize the surface. An oxide layer
is then deposited. FIG. 23F shows the structure after all these
steps are done, with the deposited oxide layer indicated as
2328. After the cleave, the p- Silicon region is indicated as
2322, the n- Silicon region is indicated as 2324, and the oxide
isolation regions are indicated as 2326. Various other ele-
ments in FIG. 23F such as 2308, 2320, 2312, 2314, 2310, and
2316 have been described previously.
Step (G) is described in FIG. 23G. The structure shown in
FIG. 23F is bonded to a glass substrate 2332 with an oxide
layer 2330 using oxide-to-oxide bonding. Various elements in
FIG. 23G such as 2308, 2326, 2322, 2324, 2312, 2314, and
2310 have been described previously. Oxide regions 2328 and
2330 are bonded together. The temporary carrier wafer from
FIG. 23F is removed by shining a laser through it. A CMP
process is then conducted to reach the surface of the gate
electrode 2308. The oxide layer remaining is denoted as 2334.
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Step (H) is described in FIG. 23H. Various elements in FIG.
23Hsuchas 2312, 2314, 2328, 2330, 2332,2334, 2326, 2324,
and 2322 have been described previously. The dummy gate
dielectric and dummy gate electrode are etched away in this
step and a replacement gate dielectric 2336 and a replacement
gate electrode 2338 are deposited and planarized with CMP.
Examples of replacement gate dielectrics could be hafnium
oxide or aluminum oxide while examples of replacement gate
electrodes could be TiN or TaN or some other material. Con-
tact formation, metallization and other steps for building a
display/microdisplay are then conducted. It can be observed
that after attachment to the glass substrate, no process step
requires a processing temperature above 400° C.

FIGS. 24A-F describe an embodiment of this invention,
where single-crystal Silicon junction-less transistors are con-
structed above glass substrates at a temperature approxi-
mately less than 400° C. An ion-cut process (which is a smart
layer transfer process) is utilized for this purpose. This pro-
cess could include several steps that occur in a sequence from
Step (A) to Step (F). Many of these steps share common
characteristics, features, modes of operation, etc. When iden-
tical reference numbers are used in different drawing figures,
they are used to indicate analogous, similar or identical struc-
tures to enhance the understanding of the present invention by
clarifying the relationships between the structures and
embodiments presented in the various diagrams—particu-
larly in relating analogous, similar or identical functionality
to different physical structures.

Step (A) is illustrated in FIG. 24A. A glass substrate 2402 is
taken and a layer of silicon oxide 2404 is deposited on the
glass substrate 2402.

Step (B) is illustrated in F1G. 24B. A p- Silicon wafer 2406 is
implanted with a n+ Silicon layer 2408 above which an oxide
layer 2410 is deposited. A RTA or spike anneal or laser anneal
is conducted to activate dopants. Following this, hydrogen is
implanted into the wafer at a certain depth indicated by 2412.
Alternatively, helium can be implanted.

Step (C) is illustrated in FIG. 24C. The structure shown in
FIG. 24B is flipped and bonded onto the structure shown in
FIG. 24 A using oxide-to-oxide bonding. This bonded struc-
ture is cleaved at its hydrogen plane, after which a CMP is
done. FIG. 24C shows the structure after all these processes
are completed. 2414 indicates the n+ Si layer, while 2402,
2404, and 2410 have been described previously.

Step (D) is illustrated in FIG. 24D. A lithography and etch
process is conducted to pattern the n+ Silicon layer 2414 in
FIG. 24C to form n+ Silicon regions 2418 in FIG. 24D. The
glass substrate is indicated as 2402 and the bonded oxide
layers 2404 and 2410 are shown as well.

Step (E) is illustrated in FIG. 24E. A gate dielectric 2420 and
gate electrode 2422 are deposited, following which a CMP is
done. 2402 is as described previously. The n+ Si regions 2418
are not visible in this figure, since they are covered by the gate
electrode 2422. Oxide regions 2404 and 2410 have been
described previously.

Step (F) is illustrated in FIG. 24F. The gate dielectric 2420
and gate electrode 2422 from FIG. 24E are patterned and
etched to form the structure shown in FIG. 24F. The gate
dielectric after the etch process is indicated as 2424 while the
gate electrode after the etch process is indicated as 2426. n+
Si regions are indicated as 2418 while the glass substrate is
indicated as 2402. Oxide regions 2404 and 2410 have been
described previously. It can be observed that a three-side
gated junction-less transistor is formed at the end of the
process described with respect of FIGS. 24A-F. Contacts,
metallization and other steps for constructing a display/mi-
crodisplay are performed after the steps indicated by FIGS.
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24 A-F. It can be seen that the glass substrate is not exposed to
temperatures greater than approximately 400° C. during any
step of the above process for forming the junction-less tran-
sistor.

FIGS. 25A-D describe an embodiment of this invention,
where amorphous Si or polysilicon junction-less transistors
are constructed above glass substrates at a temperature less
than 400° C. This process could include several steps that
occur in a sequence from Step (A) to Step (D). Many of these
steps share common characteristics, features, modes of
operation, etc. When identical reference numbers are used in
different drawing figures, they are used to indicate analogous,
similar or identical structures to enhance the understanding of
the present invention by clarifying the relationships between
the structures and embodiments presented in the various dia-
grams—particularly in relating analogous, similar or identi-
cal functionality to different physical structures.

Step (A) is illustrated in FIG. 25A. A glass substrate 2502 is
taken and a layer of silicon oxide 2504 is deposited on the
glass substrate 2502. Following this deposition, a layer of n+
Si12506 is deposited using low-pressure chemical vapor depo-
sition (LPCVD) or plasma enhanced chemical vapor deposi-
tion (PECVD). This layer of n+ Si could optionally be hydro-
genated.

Step (B) is illustrated in FIG. 25B. A lithography and etch
process is conducted to pattern the n+ Silicon layer 2506 in
FIG. 25A to form n+ Silicon regions 2518 in FIG. 25B. 2502
and 2504 have been described previously.

Step (C) is illustrated in FIG. 25C. A gate dielectric 2520 and
gate electrode 2522 are deposited, following which a CMP is
optionally done. 2502 is as described previously. The n+ Si
regions 2518 are not visible in this figure, since they are
covered by the gate electrode 2522.

Step (D) is illustrated in FIG. 25D. The gate dielectric 2520
and gate electrode 2522 from FIG. 25C are patterned and
etched to form the structure shown in FIG. 25D. The gate
dielectric after the etch process is indicated as 2524 while the
gate electrode after the etch process is indicated as 2526. n+
Si regions are indicated as 2518 while the glass substrate is
indicated as 2502. It can be observed that a three-side gated
junction-less transistor is formed at the end of the process
described with respect of FIGS. 25A-D. Contacts, metalliza-
tion and other steps for constructing a display/microdisplay
are performed after the steps indicated by FIGS. 25A-D. It
can be seen that the glass substrate is not exposed to tempera-
tures greater than 400° C. during any step of the above process
for forming the junction-less transistor.

FIGS. 26A-C illustrate an embodiment of this invention,
where a microdisplay is constructed using stacked RGB
LEDs and control circuits are connected to each pixel with
solder bumps. This process could include several steps that
occur in a sequence from Step (A) to Step (C). Many of these
steps share common characteristics, features, modes of
operation, etc. When identical reference numbers are used in
different drawing figures, they are used to indicate analogous,
similar or identical structures to enhance the understanding of
the present invention by clarifying the relationships between
the structures and embodiments presented in the various dia-
grams—particularly in relating analogous, similar or identi-
cal functionality to different physical structures.

Step (A) is illustrated in FIG. 26A. Using procedures similar
to FIG. 4A-S, the structure shown in FIG. 26 A is constructed.
Various elements of FIG. 26A are as follows:

2646—a glass substrate,

2644—an oxide layer, could be a conductive oxide such as
ITO,
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2634—an oxide layer, could be a conductive oxide such as
ITO
2633—a an optional reflector, could be a Distributed Bragg
Reflector or some other type of reflector,
2632—a P-type confinement layer that is used fora Blue LED
(One example of a material for this region is GaN),
2630—a buffer layer that is typically used for a Blue LED
(One example of a material for this region is AlGaN),
2628—a multiple quantum well used for a Blue LED (One
example of materials for this region are InGaN/GaN),
2627—a N-type confinement layer that is used for a Blue
LED (One example of a material for this region is GaN).
2648—an oxide layer, may be preferably a conductive metal
oxide such as ITO,
2622—an oxide layer, may be preferably a conductive metal
oxide such as ITO,
2621—an optional reflector (for example, a Distributed
Bragg Reflector),
2620—a P-type confinement layer that is used for a Green
LED (One example of a material for this region is GaN),
2618—a bufter layer that is typically used for a Green LED
(One example of a material for this region is AlGaN),
2616—a multiple quantum well used for a Green LED (One
example of materials for this region are InGaN/GaN),
2615—a N-type confinement layer that is used for a Green
LED (One example of a material for this region is GaN),
2652—an oxide layer, may be preferably a conductive metal
oxide such as ITO,
2610—an oxide layer, may be preferably a conductive metal
oxide such as ITO,
2609—an optional reflector (for example, a Distributed
Bragg Reflector),
2608—a P-type confinement layer used for a Red LED (One
example of a material for this region is AllnGaP),
2606—a multiple quantum well used for a Red LED (One
example of materials for this region are AllnGaP/GalnP),
2604—a P-type confinement layer used for a Red LED (One
example of a material for this region is AllnGaP),
2656—an oxide layer, may be preferably a transparent con-
ductive metal oxide such as ITO, and
2658—a reflector (for example, aluminum or silver).
Step (B) is illustrated in FIG. 26B. Via holes 2662 are etched
to the substrate layer 2646 to isolate different pixels in the
microdisplay/display. Also, viaholes 2660 are etched to make
contacts to various layers of the stack. These via holes may be
preferably not filled. An alternative is to fill the via holes with
a compatible oxide and planarize the surface with CMP. Vari-
ous elements in FIG. 26B such as 2646, 2644, 2634, 2633,
2632,2630,2628,2627,2648,2622,2621,2620,2618, 2616,
2615, 2652, 2610, 2609, 2608, 2606, 2604, 2656 and 2658
have been described previously.
Step (C) is illustrated in FIG. 26C. Using procedures similar
to those described in respect to FIGS. 4A-S, the via holes
2660 have contacts 2664 (for example, with Aluminum)
made to them. Also, using procedures similar to those
described in FIGS. 4A-S, nickel layers 2666, solder layers
2668, and a silicon sub-mount 2670 with circuits integrated
on them are constructed. The silicon sub-mount 2670 has
transistors to control each pixel in the microdisplay/display.
Various elements in FIG. 26C such as 2646, 2644, 2634,
2633,2632,2630,2628,2627,2648,2622,2621,2620,2618,
2616,2615,2652,2610,2609, 2608,2606, 2604, 2656, 2660,
2662, and 2658 have been described previously.
It can be seen that the structure shown in FIG. 26C can have
each pixel emit a certain color of light by tuning the voltage
given to the red, green and blue layers within each pixel. This
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microdisplay may be constructed using the ion-cut technol-
ogy, a smart layer transfer technique.

FIGS. 27A-D illustrate an embodiment of this invention,
where a microdisplay is constructed using stacked RGB
LEDs and control circuits are integrated with the RGB LED
stack. This process could include several steps that occur in a
sequence from Step (A)to Step (D). Many of these steps share
common characteristics, features, modes of operation, etc.
When identical reference numbers are used in different draw-
ing figures, they are used to indicate analogous, similar or
identical structures to enhance the understanding of the
present invention by clarifying the relationships between the
structures and embodiments presented in the various dia-
grams—particularly in relating analogous, similar or identi-
cal functionality to different physical structures.

Step (A) is illustrated in FIG. 27A. Using procedures similar
to those illustrated in FIGS. 4A-S, the structure shown in FIG.
27A is constructed. Various elements of FIG. 27A are as
follows:

2746—a glass substrate,

2744—an oxide layer, could be a conductive oxide such as
ITO,

2734—an oxide layer, could be a conductive oxide such as
ITO,

2733—a an optional reflector (e.g., a Distributed Bragg
Reflector or some other type of reflector),

2732—a P-type confinement layer that is used for a Blue LED
(One example of a material for this region is GaN),
2730—a buffer layer that is typically used for a Blue LED
(One example of a material for this region is AlGaN),
2728—a multiple quantum well used for a Blue LED (One
example of materials for this region are InGaN/GaN),
2727—a N-type confinement layer that is used for a Blue
LED (One example of a material for this region is GaN),
2748—an oxide layer, may be preferably a conductive metal
oxide such as ITO,

2722—an oxide layer, may be preferably a conductive metal
oxide such as ITO,

2721—an optional reflector (e.g., a Distributed Bragg Reflec-
tor),

2720—a P-type confinement layer that is used for a Green
LED (One example of a material for this region is GaN),
2718—a bufter layer that is typically used for a Green LED
(One example of a material for this region is AlGaN),
2716—a multiple quantum well used for a Green LED (One
example of materials for this region are InGaN/GaN),
2715—a N-type confinement layer that is used for a Green
LED (One example of a material for this region is GaN),
2752—an oxide layer, may be preferably a conductive metal
oxide such as ITO,

2710—an oxide layer, may be preferably a conductive metal
oxide such as ITO,

2709—an optional reflector (e.g., a Distributed Bragg Reflec-
tor),

2708—a P-type confinement layer used for a Red LED (One
example of a material for this region is AllnGaP),

2706—a multiple quantum well used for a Red LED (One
example of materials for this region are AllnGaP/GalnP),
2704—a P-type confinement layer used for a Red LED (One
example of a material for this region is AllnGaP),

2756—an oxide layer, may be preferably a transparent con-
ductive metal oxide such as ITO,

2758—a reflector (e.g., aluminum or silver).

Step (B) is illustrated in FIG. 27B. Via holes 2762 are etched
to the substrate layer 2746 to isolate different pixels in the
microdisplay/display. Also, viaholes 2760 are etched to make
contacts to various layers of the stack. These via holes may be
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preferably filled with a compatible oxide and the surface can
be planarized with CMP. Various elements of FIG. 27B such
as 2746, 2744, 2734, 2733, 2732, 2730, 2728, 2727, 2748,
2722,2721,2720,2718, 2716, 2715,2752,2710, 2709, 2708,
2706, 2704, 2756 and 2758 have been described previously.
Step (C) is illustrated in FIG. 27C. Metal 2764 (for example)
is constructed within the via holes 2760 using procedures
similar to those described in respect to FIGS. 4A-S. Follow-
ing this construction, an oxide layer 2766 is deposited. Vari-
ous elements of FIG. 27C such as 2746, 2744, 2734, 2733,
2732,2730,2728,2727,2748,2722,2721,2720,2718, 2716,
2715,2752,2710,2709, 2708, 2706, 2704, 2756, 2760, 2762
and 2758 have been described previously.
Step (D) is illustrated in FIG. 27D. Using procedures
described in co-pending U.S. patent application Ser. No.
12/901,890, the content of which is incorporated herein by
reference, a single crystal silicon transistor layer 2768 can be
monolithically integrated using ion-cut technology atop the
structure shown in FIG. 27C. This transistor layer 2768 is
connected to various contacts of the stacked LED layers (not
shown in the figure for simplicity). Following this connec-
tion, nickel layer 2770 is constructed and solder layer 2772 is
constructed. The packaging process then is conducted where
the structure shown in FIG. 27D is connected to a silicon
sub-mount.
It can be seen that the structure shown in FIG. 27D can have
each pixel emit a certain color of light by tuning the voltage
given to the red, green and blue layers within each pixel. This
microdisplay is constructed using the ion-cut technology, a
smart layer transfer technique. This process where transistors
are integrated monolithically atop the stacked RGB display
can be applied to the LED concepts disclosed in association
with FIGS. 4-10.

The embodiments of this invention described in FIGS.
26-27 may enable novel implementations of “smart-lighting
concepts” (also known as visible light communications) that
are described in “Switching LEDs on and off to enlighten
wireless communications”, EETimes, June 2010 by R. Colin
Johnson. For these prior art smart lighting concepts, LED
lights could be turned on and off faster than the eye can react,
so signaling or communication of information with these
LED lights is possible. An embodiment of this invention
involves designing the displays/microdisplays described in
FIGS. 26-27 to transmit information, by modulating wave-
length of each pixel and frequency of switching each pixel on
or off. One could thus transmit a high bandwidth through the
visible light communication link compared to a LED, since
each pixel could emit its own information stream, compared
to just one information stream for a standard LED. The
stacked RGB LED embodiment described in FIGS. 4A-S
could also provide a improved smart-light than prior art since
it allows wavelength tunability besides the ability to turn the
LED on and off faster than the eye can react.

NuSolar Technology:

Multijunction solar cells are constructed of multiple p-n
junctions stacked atop each other. Multi-junction solar cells
are often constructed today as shown in FIG. 18A. A Germa-
nium substrate 2800 is taken and multiple layers are grown
epitaxially atop it. The first epitaxial layer is a p-type doped
Ge back-surface field (BSF) layer, indicated as 2802. Above
it, a n-type doped Ge base layer 2804 is epitaxially grown. A
InGaP hetero layer 2806 is grown above this. Following this
growth, a n-type InGaAs buffer layer 2808 is grown. A tunnel
junction 2810 is grown atop it. The layers 2802, 2804, 2806,
and 2808 form the bottom Ge cell 2838 of the multi-junction
solar cell described in FIG. 18A. Above this bottom cell and
the tunnel junction 2810, a middle cell constructed of InGaAs
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is epitaxially grown, and is indicated as 2836. The InGaAs
middle cell has the following 4 layers: a p+ doped back
surface field (BSF) layer 2812 of InGaP, a p doped base layer
2814 of InGaAs, an doped emitter layer 2816 of InGaAs, and
a n+ doped window layer 2818 of InGaP. Above this InGaAs
middle cell 2836, a tunnel junction 2820 is grown epitaxially
and above this, another cell, constructed of InGaP, and called
atop cell 2834 is epitaxially grown. This top cell 2834 has the
following layers: a p+ doped back-surface field (BSF) layer of
AllnGaP 2822, a p doped base layer of InGaP 2824, a n doped
emitter layer of InGaP 2826 and a n+ doped window layer of
AlInP 2828. Above this layer of AllnP 2828, a GaAs layer
2830 is epitaxially grown, Aluminum contacts 2840 are
deposited and an anti-reflection (AR) coating 2832 is formed.
The purpose of back-surface field (BSF) layers in the multi-
junction solar cell depicted in FIG. 18A is to reduce scattering
of carriers towards the tunnel junctions. The purpose of the
window layers is to reduce surface recombination velocity.
Both the BSF layers and window layers are heterojunctions
that help achieve the above mentioned purposes. Tunnel junc-
tions help achieve good ohmic contact between various junc-
tions in the multi-junction cell. It can be observed that the
bottom, middle and top cells in the multi-junction cell are
arranged in the order of increasing band-gap and help capture
different wavelengths of the sun’s spectrum.

FIG. 28B shows the power spectrum of the sun vs. photon
energy. It can be seen that the sun’s radiation has energies in
between 0.6 eV and 3.5 eV. Unfortunately though, the multi-
junction solar cell shown in FIG. 28A has band-gaps not
covering the solar spectrum (band-gap of cells varies from
0.65eVto 1.86 eV).

FIG. 28C shows the solar spectrum and indicates the frac-
tion of solar power converted to electricity by the multi-
junction solar cell from FIG. 28A. It can be observed from
FIG. 28C that a good portion of the solar spectrum is not
converted to electricity. This is largely because the band-gap
of'various cells of the multi-junction solar cell does not cover
the entire solar spectrum.

FIGS. 29A-H show a process flow for constructing multi-
junction solar cells using a layer transfer flow. Although
FIGS. 29 A-H show a process flow for stacking two cells with
two different bandgaps, it is fairly general, and can be
extended to processes involving more than two cells as well.
This process could include several steps that occur in a
sequence from Step (A)to Step (H). Many of these steps share
common characteristics, features, modes of operation, etc.
When identical reference numbers are used in different draw-
ing figures, they are used to indicate analogous, similar or
identical structures to enhance the understanding of the
present invention by clarifying the relationships between the
structures and embodiments presented in the various dia-
grams—particularly in relating analogous, similar or identi-
cal functionality to different physical structures.

Step (A) is illustrated in FIG. 29A. Three wafers 2920, 2940
and 2946 have different materials grown or deposited above
them. Materials from these three wafers 2920, 2940 and 2946
are stacked using layer transfer to construct the multi-junc-
tion solar cell described in this embodiment of the invention.
The wafer 2946 includes a substrate C denoted as 2942 above
which an oxide layer C, denoted as 2944, is deposited.
Examples of materials for 2942 include heavily doped silicon
and the oxide layer C 2944 could preferably be a conductive
metal oxide such as ITO. The wafer 2940 includes a substrate
for material system B, also called substrate B 2938 (e.g., InP
or GaAs), a buffer layer 2936, a p++ contact layer B (e.g.,
InGaP) 2934, a p+ back-surface field (BSF) layer B (e.g.,
InGaP) 2932, a p base layer B (eg. InGaAs) 2930, a n emitter
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layer B (e.g., InGaAs) 2928, a n+ window layer B (e.g.,
InGaP) 2926, a n++ contact layer B (e.g., InGaP) 2924 and an
oxide layer B (e.g., ITO) 2922. The wafer 2920 includes a
substrate for material system A, also called substrate A 2918
(e.g., InP or GaAs), a buffer layer 2916, a p++ contact layer A
(eg. AllnGaP) 2914, a p+ back-surface field (BSF) layer A
(e.g., AllnGaP) 2912, a p-base layer A (e.g., InGaP) 2910, a
n-emitter layer A (e.g., InGaP) 2918, a n+ window layer A
(e.g., AllnP) 2916, a n++ contact layer A (e.g., AllnP) 2914
and an oxide layer A (e.g., ITO) 2912. Various other materials
and material systems can be used instead of the examples of
materials listed above.

Step (B) is illustrated in FIG. 29B. Hydrogen is implanted
into the structure 2920 of FIG. 29A at a certain depth indi-
cated by 2948. Various other elements of FIG. 29B such as
2902, 2904, 2906, 2908, 2910, 2912, 2914, 2916, and 2918
have been described previously. Alternatively, Helium can be
implanted instead of hydrogen. Various other atomic species
can be implanted.

Step (C) is illustrated in FIG. 29C. The structure shown in
FIG. 29B is flipped and bonded atop the structure indicated as
2946 in FIG. 29A. Various elements in FIG. 29C such as
2902,2904,2906,2908, 2910, 2912,2914, 2916, 2944, 2942,
and 2918 have been described previously.

Step (D) is illustrated in FIG. 29D. The structure shown in
FIG. 29C may be cleaved at its hydrogen plane 2948 prefer-
ably using a sideways mechanical force. Alternatively, an
anneal could be used. A CMP is then done to planarize the
surface to produce p++ contact layer A 2915. Various other
elements in FIG. 29D such as 2942, 2944, 2902, 2904, 2906,
2908, 2910, and 2912 have been described previously. The
substrate 2918 from FIG. 29C removed by cleaving may be
reused.

Step (E) is illustrated in FIG. 29E. An oxide layer 2950 is
deposited atop the structure shown in FIG. 29D. This oxide
layer 2950 may be preferably a conductive metal oxide such
as ITO, although an insulating oxide could also be used.
Various elements in FIG. 29E such as 2942, 2944, 2902,
2904, 2906, 2908, 2910, 2915, and 2912 have been described
previously.

Step (F) is illustrated using FIG. 29F. The structure indicated
as 2940 in FIG. 29A is implanted with hydrogen at a certain
depth 2952. Alternatively, Helium or some other atomic spe-
cies can be used. Various elements of FIG. 29F such as 2922,
2924, 2926, 2928, 2930, 2932, 2934, 2936, and 2938 have
been indicated previously.

Step (G) is illustrated in FIG. 29G. The structure shown in
FIG. 29F is flipped and bonded onto the structure shown in
FIG. 29E using oxide-to-oxide bonding. Various elements in
FIG. 29G such as 2942,2944, 2902, 2904, 2906, 2908, 2910,
2912,2915,2950,2922, 2924, 2926,2928, 2930, 2932, 2934,
2936, 2952, and 2938 have been indicated previously.

Step (H) is illustrated in FIG. 29H. The structure shown in
FIG. 29G is cleaved at its hydrogen plane 2952. A CMP is
then done to planarize the surface and produces the p++
contact layer B indicated as 2935 in FIG. 29H. Above this, an
oxide layer 2952 (e.g., ITO) is deposited. The substrate B
indicated as 2938 in FIG. 29G can be reused after cleave.
Various other elements in FIG. 29H such as 2942, 2944, 2902,
2904,2906,2908,2910, 2912, 2915, 2950, 2922, 2924, 2926,
2928, 2930, and 2932 have been indicated previously.

After completing steps (A) to (H), contacts and packaging are
then done. One could make contacts to the top and bottom of
the stack shown in FIG. 29H using one front contact to ITO
layer 2954 and one back contact to the heavily doped Si
substrate 2942. Alternatively, contacts could be made to each
cell of the stack shown in FIG. 29H as described in respect to
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FIG. 4A-S. While FIGS. 29A-H show two cells in series for
the multijunction solar cell, the steps shown in the above
description can be repeated for stacking more cells that could
be constructed of various band gaps. The advantage of the
process shown in FIG. 29 A-H is that all processes for stacking
are done at temperatures less than 400° C., and could even be
done at less than 250° C. Therefore, thermal expansion co-
efficient mismatch may be substantially mitigated. Likewise,
lattice mismatch may be substantially mitigated as well.
Therefore, various materials such as GaN, Ge, InGaP and
others which have widely different thermal expansion co-
efficients and lattice constant can be stacked atop each other.
This flexibility in use of different materials may enable a full
spectrum solar cell or a solar cell that covers a increased band
within the solar spectrum than the prior art cell shown in FIG.
28A.

FIGS. 30A-D show a process flow for constructing another
embodiment of this invention, a multi-junction solar cell
using a smart layer transtfer technique (ion-cut). This process
may include several steps that occur in a sequence from Step
(A) to Step (D). Many of these steps share common charac-
teristics, features, modes of operation, etc. When identical
reference numbers are used in different drawing figures, they
are used to indicate analogous, similar or identical structures
to enhance the understanding of the present invention by
clarifying the relationships between the structures and
embodiments presented in the various diagrams—particu-
larly in relating analogous, similar or identical functionality
to different physical structures.

Step (A) is illustrated in FIG. 30A. It shows a multi-junction
solar cell constructed using epitaxial growth on a heavily
doped Ge substrate, as described in the prior art multi-junc-
tion solar cell of FIG. 28A. The structure shown in FIG. 30A
includes the following components:

3002—a Ge substrate,

3004—a p-type Ge BSF layer,

3006—a n-type Ge base layer,

3008—a InGaP hetero layer,

3010—a n-type InGaAs buffer layer,

3012—a tunnel junction,

3014—a p+ InGaP BSF layer,

3016—a p-type InGaAs base layer,

3018—a n-type InGaAs emitter layer,

3020—a n+ InGaP window layer,

3022—a tunnel junction,

3024—a p+ AllnGaP BSF layer,

3026—a p-type InGaP BSF layer,

3028—a n-type InGaP emitter layer,

3030—a n+-type AllnP window layer, and

3032—an oxide layer, may be preferably of a conductive
metal oxide such as ITO. Further details of each of these
layers is provided in the description of FIG. 28A.

Step (B) is illustrated in FIG. 30B. Above a sapphire or SiC or
bulk GaN substrate 3034, various layers such as buffer layer
3036, a n+ GaN layer 3038, a n InGaN layer 3040, a p-type
InGaN layer 3042 and a p+ GaN layer 3044 are epitaxially
grown. Following this growth, an oxide layer 3046 may be
constructed preferably of a transparent conducting oxide such
as, for example, ITO is deposited. Hydrogen is implanted into
this structure at a certain depth indicated as 3048. Alterna-
tively, Helium or some other atomic species can be implanted.
Step (C) is illustrated in FIG. 30C. The structure shown in
FIG. 30B is flipped and bonded atop the structure shown in
FIG. 30A using oxide-to-oxide bonding. Various elements in
FIG. 30C such as 3002, 3004, 3006, 3008, 3010, 3012, 3014,
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3016,3018,3020,3022,3024, 3026,3028,3030,3032, 3048,
3046, 3044, 3042, 3040, 3038, 3036, and 3034 have been
described previously.

Step (D) is illustrated using FIG. 30D. The structure shown in
FIG. 30C is cleaved at its hydrogen plane 3048. A CMP
process is then conducted to result in the n+ GaN layer 3041.
Various elements in FIG. 30D such as 3002, 3004, 3006,
3008,3010,3012,3014,3016,3018,3020,3022,3024, 3026,
3028, 3030, 3032, 3046, 3044, 3042, and 3038 have been
described previously.

After completing steps (A) to (D), contacts and packaging are
then done. Contacts may be made to the top and bottom of the
stack shown in FIG. 30D, for example, one front contact to the
n+ GaN layer 3041 and one back contact to the heavily doped
Ge substrate 3002. Alternatively, contacts could be made to
each cell of the stack shown in FIG. 30D as described in FIGS.
4A-S.

FIGS. 29-30 described solar cells with layer transfer pro-
cesses. Although not shown in FIG. 29-30, it will be clear to
those skilled in the art based on the present disclosure that
front and back reflectors could be used to increase optical path
length of the solar cell and harness more energy. Various other
light-trapping approaches could be utilized to boost effi-
ciency as well.

An aspect of various embodiments of this invention is the
ability to cleave wafers and bond wafers at lower tempera-
tures (e.g., less than 400° C. or even less than 250° C.). In
co-pending U.S. patent application Ser. No. 12/901,890 the
content of which is incorporated by reference, several tech-
niques to reduce temperatures for cleave and bond processes
are described. These techniques are herein incorporated in
this document by reference.

Several material systems have been quoted as examples for
various embodiments of this invention in this patent applica-
tion. It will be clear to one skilled in the art based on the
present disclosure that various other material systems and
configurations can also be used without violating the con-
cepts described. It will also be appreciated by persons of
ordinary skill in the art that the present invention is not limited
to what has been particularly shown and described herein-
above. Rather, the scope of the present invention includes
both combinations and sub-combinations of the various fea-
tures described hereinabove as well as modifications and
variations which would occur to such skilled persons upon
reading the foregoing description. Thus the invention is to be
limited only by the appended claims.

We claim:

1. An integrated device, comprising:

an image sensor array and an image circuit array;

wherein said image sensor array comprises a first mono-
crystallized silicon layer, and said image circuit array
comprises a second mono-crystallized silicon layer,

wherein disposed between said first mono-crystallized
silicon layer and said second mono-crystallized sili-
con layer is thin isolation layer, and

wherein said first mono-crystallized silicon layer or said
second mono-crystallized silicon layer thickness is
less than 400 nm, and

wherein said second mono-crystal layer comprises a
plurality of single crystal transistors,

wherein said image sensor array comprises a plurality of
image sensor pixels,

wherein said image sensor pixels and said single crystal
transistors are aligned to each other.

2. An integrated device according to claim 1,

wherein said second mono-crystal layer is less than 2

microns thick.
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3. An integrated device according to claim 1,
wherein said first mono-crystallized silicon layer com-
prises two crystalline layers,
wherein said two crystalline layers comprise a first image
sensor layer and a second image sensor layer, and
wherein said first image sensor layer is sensitive to a dif-
ferent spectrum than said second image sensor layer.
4. An integrated device, comprising:
an image sensor array and an image circuit array;
wherein said image sensor array comprises a first mono-
crystallized silicon layer, and said image circuit array
comprises a second mono-crystallized silicon layer,
wherein disposed between said first mono-crystallized
silicon layer and said second mono-crystallized sili-
con layer is thin isolation layer, and
wherein said first mono-crystallized silicon layer or said
second mono-crystallized silicon layer thickness is
less than 400 nm, and
wherein said second mono-crystal layer comprises a
plurality of single crystal transistors,
wherein said second mono-crystal layer comprises two
crystalline layers,
wherein said two crystalline layers comprise a first tran-
sistors layer and a second transistors layer.
5. An integrated device according to claim 4,
wherein said first mono-crystallized silicon layer com-
prises two crystalline layers,
wherein said two crystalline layers comprise a first image
sensor layer and a second image sensor layer, and
wherein at least one of said two crystalline layers is less
than 2 microns thick.
6. An integrated device according to claim 4,
wherein said single crystal transistors form a plurality of
pixel control circuits.
7. An integrated device, comprising:
an image sensor array and an image circuit array;
wherein said image sensor array comprises a first mono-
crystallized silicon layer, and said image circuit array
comprises a second mono-crystallized silicon layer,
wherein disposed between said first mono-crystallized
silicon layer and said second mono-crystallized sili-
con layer is a thin isolation layer,
wherein said first mono-crystallized silicon layer or said
second mono-crystallized silicon layer thickness is
less than 400 nm, and
wherein through said thin isolation layer are a multiplic-
ity of conducting vias, and
wherein said conducting vias have a diameter of less
than 200 nm, and
a third mono-crystallized silicon layer underlying said sec-
ond mono-crystallized silicon layer,
wherein said third mono-crystallized silicon layer com-
prises pixel electronics read-out and control circuits.
8. An integrated device according to claim 7,
wherein said image sensor array is bonded on top of said
image circuit array forming two substantially parallel
planes, and
wherein said bonded leaves a re-useable base wafer used to
hold said mono-crystallized silicon layer.
9. An integrated device according to claim 7,
wherein said image sensor array comprises a first image
sensor array and a second image sensor array, and
wherein said first image sensor array optical sensitivity is
substantially different than said second image sensor
array.
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10. An integrated device according to claim 7,
wherein said second mono-crystalline silicon layer com-
prises a plurality of single crystal transistors, and
wherein said single crystal transistors form a plurality of
pixel control circuits.
11. An integrated device according to claim 7,
wherein said second mono-crystallized silicon layer com-
prises an infra-red photo detector.
12. An integrated device, comprising:
an image sensor array and an image circuit array;
wherein said image sensor array comprises a first mono-
crystallized silicon layer, and said image circuit array
comprises a second mono-crystallized silicon layer,
wherein disposed between said first mono-crystallized
silicon layer and said second mono-crystallized sili-
con layer is thin isolation layer, and
wherein said first mono-crystallized silicon layer or said
second mono-crystallized silicon layer thickness is
less than 400 nm, and
a third mono-crystallized silicon layer underlying said first
mono-crystallized silicon layer,
wherein said third mono-crystallized silicon layer com-
prises pixel electronics read-out and control circuits.
13. An integrated device according to claim 12,
wherein said image sensor array is bonded on top of said
image circuit array forming two substantially parallel
planes, and
wherein said bonded leaves a re-useable base wafer used to
hold said mono-crystallized silicon layer.
14. An integrated device according to claim 12,
wherein said image sensor array comprises a first image
sensor array and a second image sensor array, and
wherein said first image sensor array optical sensitivity is
substantially different than said second image sensor
array.
15. An integrated device according to claim 12, further

comprising:

a multiplicity of through silicon layer conducting vias,

wherein said conducting vias have a diameter of less
than 200 nm.

16. An integrated device according to claim 12,

wherein said second mono-crystallized silicon layer com-
prises an infra-red photo detector.

17. An integrated device according to claim 12,

wherein said image sensor array comprises a first image
sensor array and a second image sensor array, and

wherein disposed between said first image sensor array and
said second image sensor array is a wire grid polarizer.

18. An integrated device according to claim 1,

wherein said single crystal transistors form a plurality of
pixel control circuits.

19. An integrated device according to claim 4,

wherein said first mono-crystallized silicon layer com-
prises two crystalline layers,

wherein said two crystalline layers comprise a first image
sensor layer and a second image sensor layer, and

wherein said first image sensor layer is sensitive to a dif-
ferent spectrum than said second image sensor layer.

20. An integrated device according to claim 7,

wherein said first mono-crystallized silicon layer com-
prises two crystalline layers,

wherein said two crystalline layers comprise a first image
sensor layer and a second image sensor layer, and

wherein said first image sensor layer is sensitive to a dif-
ferent spectrum than said second image sensor layer.
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